IDEAS home Printed from https://ideas.repec.org/r/inm/ormnsc/v70y2024i2p714-750.html
   My bibliography  Save this item

Deep Learning in Asset Pricing

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Adam Bouland & Wim van Dam & Hamed Joorati & Iordanis Kerenidis & Anupam Prakash, 2020. "Prospects and challenges of quantum finance," Papers 2011.06492, arXiv.org.
  2. Alexander Arimond & Damian Borth & Andreas Hoepner & Michael Klawunn & Stefan Weisheit, 2020. "Neural Networks and Value at Risk," Papers 2005.01686, arXiv.org, revised May 2020.
  3. Jorge Guijarro-Ordonez & Markus Pelger & Greg Zanotti, 2021. "Deep Learning Statistical Arbitrage," Papers 2106.04028, arXiv.org, revised Oct 2022.
  4. Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021. "Can Machine Learning Help to Select Portfolios of Mutual Funds?," Working Papers 1245, Barcelona School of Economics.
  5. Alessi, Lucia & Ossola, Elisa & Panzica, Roberto, 2023. "When do investors go green? Evidence from a time-varying asset-pricing model," International Review of Financial Analysis, Elsevier, vol. 90(C).
  6. Hu, Nan & Yin, Xuebao & Yao, Yuhang, 2025. "A novel HAR-type realized volatility forecasting model using graph neural network," International Review of Financial Analysis, Elsevier, vol. 98(C).
  7. Michael Karpe, 2020. "An overall view of key problems in algorithmic trading and recent progress," Papers 2006.05515, arXiv.org.
  8. Eghbal Rahimikia & Stefan Zohren & Ser-Huang Poon, 2021. "Realised Volatility Forecasting: Machine Learning via Financial Word Embedding," Papers 2108.00480, arXiv.org, revised Nov 2024.
  9. Mohamed Ben Alaya & Ahmed Kebaier & Djibril Sarr, 2021. "Deep Calibration of Interest Rates Model," Papers 2110.15133, arXiv.org, revised Sep 2024.
  10. Jiang, Hao & Li, Sophia Zhengzi & Yuan, Peixuan, 2025. "Granular information and sectoral movements," Journal of Economic Dynamics and Control, Elsevier, vol. 171(C).
  11. Victor Chernozhukov & Whitney Newey & Rahul Singh & Vasilis Syrgkanis, 2020. "Adversarial Estimation of Riesz Representers," Papers 2101.00009, arXiv.org, revised Apr 2024.
  12. Ma, Tian & Wang, Wanwan & Chen, Yu, 2023. "Attention is all you need: An interpretable transformer-based asset allocation approach," International Review of Financial Analysis, Elsevier, vol. 90(C).
  13. Avramov, D. & Ge, S. & Li, S. & Linton, O. B., 2025. "Dual Industry Effects and Cross-Stock Predictability," Janeway Institute Working Papers 2506, Faculty of Economics, University of Cambridge.
  14. Eric Andr'e & Guillaume Coqueret, 2020. "Dirichlet policies for reinforced factor portfolios," Papers 2011.05381, arXiv.org, revised Jun 2021.
  15. Jiajun Gu & Zichen Yang & Xintong Lin & Sixun Chen & YuTing Lu, 2024. "AI-Enhanced Factor Analysis for Predicting S&P 500 Stock Dynamics," Papers 2412.12438, arXiv.org.
  16. Tian Ma & Cunfei Liao & Fuwei Jiang, 2023. "Timing the factor zoo via deep learning: Evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(1), pages 485-505, March.
  17. Avramov, D. & Ge, S. & Li, S. & Linton, O. B., 2025. "Dual Industry Effects and Cross-Stock Predictability," Cambridge Working Papers in Economics 2512, Faculty of Economics, University of Cambridge.
  18. Qihui Chen & Nikolai Roussanov & Xiaoliang Wang, 2021. "Semiparametric Conditional Factor Models in Asset Pricing," Papers 2112.07121, arXiv.org, revised Apr 2025.
  19. Philip Ndikum, 2020. "Machine Learning Algorithms for Financial Asset Price Forecasting," Papers 2004.01504, arXiv.org.
  20. Yanlong Wang & Jian Xu & Shao-Lun Huang & Danny Dongning Sun & Xiao-Ping Zhang, 2025. "Assessing Uncertainty in Stock Returns: A Gaussian Mixture Distribution-Based Method," Papers 2503.06929, arXiv.org.
  21. Xi Dong & Yan Li & David E. Rapach & Guofu Zhou, 2022. "Anomalies and the Expected Market Return," Journal of Finance, American Finance Association, vol. 77(1), pages 639-681, February.
  22. Kristof Lommers & Ouns El Harzli & Jack Kim, 2021. "Confronting Machine Learning With Financial Research," Papers 2103.00366, arXiv.org, revised Mar 2021.
  23. Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," Papers 2009.03394, arXiv.org, revised Jul 2021.
  24. Anastasis Kratsios & Cody Hyndman, 2020. "Deep Arbitrage-Free Learning in a Generalized HJM Framework via Arbitrage-Regularization," Risks, MDPI, vol. 8(2), pages 1-30, April.
  25. Grammig, Joachim & Hanenberg, Constantin & Schlag, Christian & Sönksen, Jantje, 2020. "Diverging roads: Theory-based vs. machine learning-implied stock risk premia," University of Tübingen Working Papers in Business and Economics 130, University of Tuebingen, Faculty of Economics and Social Sciences, School of Business and Economics.
  26. Haoyang Cao & Xin Guo, 2021. "Generative Adversarial Network: Some Analytical Perspectives," Papers 2104.12210, arXiv.org, revised Sep 2021.
  27. Wolfgang Drobetz & Tizian Otto, 2021. "Empirical asset pricing via machine learning: evidence from the European stock market," Journal of Asset Management, Palgrave Macmillan, vol. 22(7), pages 507-538, December.
  28. Minshuo Chen & Renyuan Xu & Yumin Xu & Ruixun Zhang, 2025. "Diffusion Factor Models: Generating High-Dimensional Returns with Factor Structure," Papers 2504.06566, arXiv.org, revised May 2025.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.