IDEAS home Printed from https://ideas.repec.org/a/zbw/jumsac/326965.html
   My bibliography  Save this article

Predicting stock returns with machine learning: Global versus sector models

Author

Listed:
  • Witter, Johannes

Abstract

Recent studies highlight the superior performance of non-linear machine learning models, such as neural networks, over traditional linear models in predicting cross-sectional stock returns. These models are capable of capturing complex non-linear interactions between predictive signals and future returns. This thesis researches whether sector-specific neural networks can detect sector-related relationships to outperform a global neural network. It evaluates the predictive power of these models at the stock level and in portfolios based on return forecasts, constructing long-short portfolios from the networks' sorted predictions. A global neural network model trained on the full sample of stocks dominates neural networks trained on individual GICS sectors in predicting the cross-section of US stock returns. Sector-specific neural networks fail to gain an advantage by capturing complex sector-specific interactions. They underperform the global neural network especially in the early out-of-sample period. The smaller sample size for each GICS sector requires a trade-off between model complexity and robust model estimation. Pooling the data for the global model solves this problem and supports the predictive power of neural networks for stock returns.

Suggested Citation

  • Witter, Johannes, 2025. "Predicting stock returns with machine learning: Global versus sector models," Junior Management Science (JUMS), Junior Management Science e. V., vol. 10(3), pages 561-581.
  • Handle: RePEc:zbw:jumsac:326965
    DOI: 10.5282/jums/v10i3pp561-581
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/326965/1/1935981846.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.5282/jums/v10i3pp561-581?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:jumsac:326965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://jums.academy/en/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.