IDEAS home Printed from https://ideas.repec.org/r/eee/transe/v48y2012i6p1093-1106.html
   My bibliography  Save this item

Robust schedule design for liner shipping services

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lanza, Giacomo & Crainic, Teodor Gabriel & Rei, Walter & Ricciardi, Nicoletta, 2021. "Scheduled service network design with quality targets and stochastic travel times," European Journal of Operational Research, Elsevier, vol. 288(1), pages 30-46.
  2. Elio Canestrelli & Marco Corazza & Giuseppe Nadai & Raffaele Pesenti, 2017. "Managing the Ship Movements in the Port of Venice," Networks and Spatial Economics, Springer, vol. 17(3), pages 861-887, September.
  3. Christiansen, Marielle & Hellsten, Erik & Pisinger, David & Sacramento, David & Vilhelmsen, Charlotte, 2020. "Liner shipping network design," European Journal of Operational Research, Elsevier, vol. 286(1), pages 1-20.
  4. Zheng, Jianfeng & Qi, Jingwen & Sun, Zhuo & Li, Feng, 2018. "Community structure based global hub location problem in liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 1-19.
  5. Guo, Liming & Zheng, Jianfeng & Du, Haoming & Du, Jian & Zhu, Zhihong, 2022. "The berth assignment and allocation problem considering cooperative liner carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
  6. Lo, Hong K. & An, Kun & Lin, Wei-hua, 2013. "Ferry service network design under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 59(C), pages 48-70.
  7. Alessandro Hill & Eduardo Lalla-Ruiz & Stefan Voß & Marcos Goycoolea, 2019. "A multi-mode resource-constrained project scheduling reformulation for the waterway ship scheduling problem," Journal of Scheduling, Springer, vol. 22(2), pages 173-182, April.
  8. Upadhyay, Amit & Gu, Weihua & Bolia, Nomesh, 2017. "Optimal loading of double-stack container trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 1-22.
  9. Hamed Hasheminia & Changmin Jiang, 2017. "Strategic trade-off between vessel delay and schedule recovery: an empirical analysis of container liner shipping," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(4), pages 458-473, May.
  10. Song, Dong-Ping & Li, Dong & Drake, Paul, 2015. "Multi-objective optimization for planning liner shipping service with uncertain port times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 1-22.
  11. Guericke, Stefan & Tierney, Kevin, 2015. "Liner shipping cargo allocation with service levels and speed optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 40-60.
  12. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Laporte, Gilbert, 2020. "Green technology adoption for fleet deployment in a shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 388-410.
  13. Ramez Kian & Tolga Bektaş & Djamila Ouelhadj, 2019. "Optimal spare parts management for vessel maintenance scheduling," Annals of Operations Research, Springer, vol. 272(1), pages 323-353, January.
  14. An, Kun & Lo, Hong K., 2016. "Two-phase stochastic program for transit network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 157-181.
  15. Li, Wenjie & Asadabadi, Ali & Miller-Hooks, Elise, 2022. "Enhancing resilience through port coalitions in maritime freight networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 1-23.
  16. Wang, Shuaian & Meng, Qiang & Liu, Zhiyuan, 2013. "Bunker consumption optimization methods in shipping: A critical review and extensions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 49-62.
  17. Akyüz, M. Hakan & Lee, Chung-Yee, 2016. "Service type assignment and container routing with transit time constraints and empty container repositioning for liner shipping service networks," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 46-71.
  18. Wang, Ying & Yeo, Gi-Tae & Ng, Adolf K.Y., 2014. "Choosing optimal bunkering ports for liner shipping companies: A hybrid Fuzzy-Delphi–TOPSIS approach," Transport Policy, Elsevier, vol. 35(C), pages 358-365.
  19. Baştuğ, Sedat & Haralambides, Hercules & Akan, Ercan & Kiraci, Kasim, 2023. "Risk mitigation in service industries: A research agenda on container shipping," Transport Policy, Elsevier, vol. 141(C), pages 232-244.
  20. Aydin, N. & Lee, H. & Mansouri, S.A., 2017. "Speed optimization and bunkering in liner shipping in the presence of uncertain service times and time windows at ports," European Journal of Operational Research, Elsevier, vol. 259(1), pages 143-154.
  21. Wang, Shuaian & Meng, Qiang, 2015. "Robust bunker management for liner shipping networks," European Journal of Operational Research, Elsevier, vol. 243(3), pages 789-797.
  22. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
  23. Wang, Hua & Wang, Shuaian & Meng, Qiang, 2014. "Simultaneous optimization of schedule coordination and cargo allocation for liner container shipping networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 261-273.
  24. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "Recoverable robustness in weekly berth and quay crane planning," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 365-389.
  25. Li, Chen & Qi, Xiangtong & Song, Dongping, 2016. "Real-time schedule recovery in liner shipping service with regular uncertainties and disruption events," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 762-788.
  26. Mulder, J. & van Jaarsveld, W.L. & Dekker, R., 2016. "Simultaneous optimization of speed and buffer times for robust transportation systems," Econometric Institute Research Papers EI2016-36, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  27. Xing, Xinjie & Song, Dongping & Qiu, Chengfeng & Drake, Paul R. & Zhan, Yuanzhu, 2023. "Joint tank container demurrage policy and flow optimisation using a progressive hedging algorithm with expanded time-space network," European Journal of Operational Research, Elsevier, vol. 307(2), pages 663-679.
  28. Mulder, J. & Dekker, R., 2016. "Optimization in container liner shipping," Econometric Institute Research Papers EI2016-05, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  29. Ksciuk, Jana & Kuhlemann, Stefan & Tierney, Kevin & Koberstein, Achim, 2023. "Uncertainty in maritime ship routing and scheduling: A Literature review," European Journal of Operational Research, Elsevier, vol. 308(2), pages 499-524.
  30. Plum, Christian E.M. & Pisinger, David & Sigurd, Mikkel M., 2014. "A service flow model for the liner shipping network design problem," European Journal of Operational Research, Elsevier, vol. 235(2), pages 378-386.
  31. Demir, Emrah & Burgholzer, Wolfgang & Hrušovský, Martin & Arıkan, Emel & Jammernegg, Werner & Woensel, Tom Van, 2016. "A green intermodal service network design problem with travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 789-807.
  32. Zhang, Abraham & Zheng, Zhichao & Teo, Chung-Piaw, 2022. "Schedule reliability in liner shipping timetable design: A convex programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 499-525.
  33. Trivella, Alessio & Corman, Francesco & Koza, David F. & Pisinger, David, 2021. "The multi-commodity network flow problem with soft transit time constraints: Application to liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
  34. Buchem, Moritz & Golak, Julian Arthur Pawel & Grigoriev, Alexander, 2022. "Vessel velocity decisions in inland waterway transportation under uncertainty," European Journal of Operational Research, Elsevier, vol. 296(2), pages 669-678.
  35. Wang, Shuaian & Meng, Qiang & Bell, Michael G.H., 2013. "Liner ship route capacity utilization estimation with a bounded polyhedral container shipment demand pattern," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 57-76.
  36. Zheng, Jianfeng & Zhang, Wenlong & Qi, Jingwen & Wang, Shuaian, 2019. "Canal effects on a liner hub location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 230-247.
  37. Dulebenets, Maxim A. & Ozguven, Eren Erman, 2017. "Vessel scheduling in liner shipping: Modeling transport of perishable assets," International Journal of Production Economics, Elsevier, vol. 184(C), pages 141-156.
  38. Olumide F. Abioye & Maxim A. Dulebenets & Junayed Pasha & Masoud Kavoosi, 2019. "A Vessel Schedule Recovery Problem at the Liner Shipping Route with Emission Control Areas," Energies, MDPI, vol. 12(12), pages 1-28, June.
  39. Lin, Dung-Ying & Tsai, Yu-Yun, 2014. "The ship routing and freight assignment problem for daily frequency operation of maritime liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 52-70.
  40. Wu, Wei-Ming, 2020. "The optimal speed in container shipping: Theory and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
  41. Dulebenets, Maxim A., 2018. "A comprehensive multi-objective optimization model for the vessel scheduling problem in liner shipping," International Journal of Production Economics, Elsevier, vol. 196(C), pages 293-318.
  42. Mulder, Judith & Dekker, Rommert, 2019. "Designing robust liner shipping schedules: Optimizing recovery actions and buffer times," European Journal of Operational Research, Elsevier, vol. 272(1), pages 132-146.
  43. Reinhardt, Line Blander & Pisinger, David & Sigurd, Mikkel M. & Ahmt, Jonas, 2020. "Speed optimizations for liner networks with business constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1127-1140.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.