IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v77y2017icp551-565.html
   My bibliography  Save this item

State-of-art review on hybrid nanofluids

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Iskandar Waini & Anuar Ishak & Ioan Pop, 2021. "Flow towards a Stagnation Region of a Vertical Plate in a Hybrid Nanofluid: Assisting and Opposing Flows," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
  2. Chandran, M. Neelesh & Manikandan, S. & Suganthi, K.S. & Rajan, K.S., 2017. "Novel hybrid nanofluid with tunable specific heat and thermal conductivity: Characterization and performance assessment for energy related applications," Energy, Elsevier, vol. 140(P1), pages 27-39.
  3. Rodrigues da Silva, Rafael & Mathias, Flavio Roberto de Carvalho & Bajay, Sergio Valdir, 2018. "Potential energy efficiency improvements for the Brazilian iron and steel industry: Fuel and electricity conservation supply curves for integrated steel mills," Energy, Elsevier, vol. 153(C), pages 816-824.
  4. Kohilavani Naganthran & Roslinda Nazar & Zailan Siri & Ishak Hashim, 2021. "Entropy Analysis and Melting Heat Transfer in the Carreau Thin Hybrid Nanofluid Film Flow," Mathematics, MDPI, vol. 9(23), pages 1-19, November.
  5. Bhalla, Vishal & Tyagi, Himanshu, 2018. "Parameters influencing the performance of nanoparticles-laden fluid-based solar thermal collectors: A review on optical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 12-42.
  6. Nur Adilah Liyana Aladdin & Norfifah Bachok, 2021. "Duality Solutions in Hydromagnetic Flow of SWCNT-MWCNT/Water Hybrid Nanofluid over Vertical Moving Slender Needle," Mathematics, MDPI, vol. 9(22), pages 1-17, November.
  7. Nur Syahirah Wahid & Norihan Md Arifin & Najiyah Safwa Khashi’ie & Ioan Pop, 2020. "Hybrid Nanofluid Slip Flow over an Exponentially Stretching/Shrinking Permeable Sheet with Heat Generation," Mathematics, MDPI, vol. 9(1), pages 1-20, December.
  8. Iskandar Waini & Anuar Ishak & Ioan Pop, 2020. "Squeezed Hybrid Nanofluid Flow Over a Permeable Sensor Surface," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
  9. Ali J. Chamkha & Sina Sazegar & Esmael Jamesahar & Mohammad Ghalambaz, 2019. "Thermal Non-Equilibrium Heat Transfer Modeling of Hybrid Nanofluids in a Structure Composed of the Layers of Solid and Porous Media and Free Nanofluids," Energies, MDPI, vol. 12(3), pages 1-27, February.
  10. Humphrey ADUN & Mustapha Mukhtar & Micheal Adedeji & Terfa Agwa & Kefas Hyelda Ibrahim & Olusola Bamisile & Mustafa Dagbasi, 2021. "Synthesis and Application of Ternary Nanofluid for Photovoltaic-Thermal System: Comparative Analysis of Energy and Exergy Performance with Single and Hybrid Nanofluids," Energies, MDPI, vol. 14(15), pages 1-26, July.
  11. Nurul Amira Zainal & Roslinda Nazar & Kohilavani Naganthran & Ioan Pop, 2021. "Stability Analysis of Unsteady MHD Rear Stagnation Point Flow of Hybrid Nanofluid," Mathematics, MDPI, vol. 9(19), pages 1-15, September.
  12. Sylwia Wciślik, 2020. "Efficient Stabilization of Mono and Hybrid Nanofluids," Energies, MDPI, vol. 13(15), pages 1-26, July.
  13. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  14. Mohamed Iqbal Shajahan & Jee Joe Michael & M. Arulprakasajothi & Sivan Suresh & Emad Abouel Nasr & H. M. A. Hussein, 2020. "Effect of Conical Strip Inserts and ZrO 2 /DI-Water Nanofluid on Heat Transfer Augmentation: An Experimental Study," Energies, MDPI, vol. 13(17), pages 1-24, September.
  15. Tong, Yijie & Boldoo, Tsogtbilegt & Ham, Jeonggyun & Cho, Honghyun, 2020. "Improvement of photo-thermal energy conversion performance of MWCNT/Fe3O4 hybrid nanofluid compared to Fe3O4 nanofluid," Energy, Elsevier, vol. 196(C).
  16. Najiyah Safwa Khashi’ie & Norihan Md Arifin & Ioan Pop, 2020. "Mixed Convective Stagnation Point Flow towards a Vertical Riga Plate in Hybrid Cu-Al 2 O 3 /Water Nanofluid," Mathematics, MDPI, vol. 8(6), pages 1-21, June.
  17. Najiyah Safwa Khashi’ie & Iskandar Waini & Anuar Ishak & Ioan Pop, 2022. "Blasius Flow over a Permeable Moving Flat Plate Containing Cu-Al 2 O 3 Hybrid Nanoparticles with Viscous Dissipation and Radiative Heat Transfer," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
  18. Minea, Alina Adriana & El-Maghlany, Wael M., 2018. "Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: Recent findings and numerical comparison," Renewable Energy, Elsevier, vol. 120(C), pages 350-364.
  19. M. Naveed & A. Arslan & H. M. A. Javed & T. Manzoor & M. M. Quazi & T. Imran & Z. M. Zulfattah & M. Khurram & I. M. R. Fattah, 2021. "State-of-the-Art and Future Perspectives of Environmentally Friendly Machining Using Biodegradable Cutting Fluids," Energies, MDPI, vol. 14(16), pages 1-35, August.
  20. Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2017. "Multi-criteria evaluation of parabolic trough collector with internally finned absorbers," Applied Energy, Elsevier, vol. 205(C), pages 540-561.
  21. Hamed Bagheri & Mohammadali Behrang & Ehsanolah Assareh & Mohsen Izadi & Mikhail A. Sheremet, 2019. "Free Convection of Hybrid Nanofluids in a C-Shaped Chamber under Variable Heat Flux and Magnetic Field: Simulation, Sensitivity Analysis, and Artificial Neural Networks," Energies, MDPI, vol. 12(14), pages 1-17, July.
  22. Natalia C. Roşca & Alin V. Roşca & Emad H. Aly & Ioan Pop, 2021. "Flow and Heat Transfer Past a Stretching/Shrinking Sheet Using Modified Buongiorno Nanoliquid Model," Mathematics, MDPI, vol. 9(23), pages 1-12, November.
  23. Bhalla, Vishal & Khullar, Vikrant & Tyagi, Himanshu, 2018. "Experimental investigation of photo-thermal analysis of blended nanoparticles (Al2O3/Co3O4) for direct absorption solar thermal collector," Renewable Energy, Elsevier, vol. 123(C), pages 616-626.
  24. Naveed Ahmed & Fitnat Saba & Umar Khan & Ilyas Khan & Tawfeeq Abdullah Alkanhal & Imran Faisal & Syed Tauseef Mohyud-Din, 2018. "Spherical Shaped ( A g − F e 3 O 4 / H 2 O ) Hybrid Nanofluid Flow Squeezed between Two Riga Plates with Nonlinear Thermal Radiation and Chemical Reaction Effects," Energies, MDPI, vol. 12(1), pages 1-23, December.
  25. Iskandar Waini & Anuar Ishak & Ioan Pop, 2021. "Hybrid Nanofluid Flow over a Permeable Non-Isothermal Shrinking Surface," Mathematics, MDPI, vol. 9(5), pages 1-18, March.
  26. Iskandar Waini & Anuar Ishak & Ioan Pop, 2021. "Flow towards a Stagnation Region of a Curved Surface in a Hybrid Nanofluid with Buoyancy Effects," Mathematics, MDPI, vol. 9(18), pages 1-13, September.
  27. Siti Nur Alwani Salleh & Norfifah Bachok & Ioan Pop, 2021. "Mixed Convection Stagnation Point Flow of a Hybrid Nanofluid Past a Permeable Flat Plate with Radiation Effect," Mathematics, MDPI, vol. 9(21), pages 1-17, October.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.