IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v38y2014icp164-171.html
   My bibliography  Save this item

Methods to estimate the industrial waste heat potential of regions – A categorization and literature review

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Pia Manz & Katerina Kermeli & Urban Persson & Marius Neuwirth & Tobias Fleiter & Wina Crijns-Graus, 2021. "Decarbonizing District Heating in EU-27 + UK: How Much Excess Heat Is Available from Industrial Sites?," Sustainability, MDPI, vol. 13(3), pages 1-34, January.
  2. Wang, Jinda & Sun, Chunhua & Qi, Chengying & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu, 2021. "Promoting the performance of district heating from waste heat recovery in China: A general solving framework based on the two-stage branch evaluation method," Energy, Elsevier, vol. 220(C).
  3. Broniszewski, Mariusz & Werle, Sebastian & Sobek, Szymon & Zaik, Karolina, 2022. "Technical and economic assessment of ORC and cogeneration including a combined variant – A case study for the Polish automotive fastener industry company," Energy, Elsevier, vol. 242(C).
  4. Zuberi, M. Jibran S. & Bless, Frédéric & Chambers, Jonathan & Arpagaus, Cordin & Bertsch, Stefan S. & Patel, Martin K., 2018. "Excess heat recovery: An invisible energy resource for the Swiss industry sector," Applied Energy, Elsevier, vol. 228(C), pages 390-408.
  5. Hong, Gui-Bing & Pan, Tze-Chin & Chan, David Yih-Liang & Liu, I-Hung, 2020. "Bottom-up analysis of industrial waste heat potential in Taiwan," Energy, Elsevier, vol. 198(C).
  6. Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
  7. Jouhara, Hussam & Nieto, Nerea & Egilegor, Bakartxo & Zuazua, Josu & González, Eva & Yebra, Ignacio & Igesias, Alfredo & Delpech, Bertrand & Almahmoud, Sulaiman & Brough, Daniel & Malinauskaite, Jurgi, 2023. "Waste heat recovery solution based on a heat pipe heat exchanger for the aluminium die casting industry," Energy, Elsevier, vol. 266(C).
  8. Krail, Jürgen & Beckmann, Georg & Schittl, Florian & Piringer, Gerhard, 2023. "Comparative thermodynamic analysis of an improved ORC process with integrated injection of process fluid," Energy, Elsevier, vol. 266(C).
  9. Weinand, Jann & McKenna, Russell & Karner, Katharina & Braun, Lorenz & Herbes, Carsten, 2018. "Assessing the potential contribution of excess heat from biogas plants towards decarbonising German residential heating," Working Paper Series in Production and Energy 31, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
  10. Bertrand, Alexandre & Mian, Alberto & Kantor, Ivan & Aggoune, Riad & Maréchal, François, 2019. "Regional waste heat valorisation: A mixed integer linear programming method for energy service companies," Energy, Elsevier, vol. 167(C), pages 454-468.
  11. Vanessa Burg & Florent Richardet & Severin Wälty & Ramin Roshandel & Stefanie Hellweg, 2023. "Mapping Local Synergies: Spatio-Temporal Analysis of Switzerland’s Waste Heat Potentials vs. Heat Demand," Energies, MDPI, vol. 17(1), pages 1-21, December.
  12. Zhou, Jincheng & Hai, Tao & Ali, Masood Ashraf & Shamseldin, Mohamed A. & Almojil, Sattam Fahad & Almohana, Abdulaziz Ibrahim & Alali, Abdulrhman Fahmi, 2023. "Waste heat recovery of a wind turbine for poly-generation purpose: Feasibility analysis, environmental impact assessment, and parametric optimization," Energy, Elsevier, vol. 263(PD).
  13. El Fil, Bachir & Garimella, Srinivas, 2021. "Waste heat recovery in commercial gas-fired tumble dryers," Energy, Elsevier, vol. 218(C).
  14. Chen, Wen-Lih & Chen, Chao-Kuang & Fang, Mao-Ju & Yang, Yu-Ching, 2018. "A numerical study on applying slot-grooved displacer cylinder to a γ-type medium-temperature-differential stirling engine," Energy, Elsevier, vol. 144(C), pages 679-693.
  15. Sun, Fangtian & Chen, Xu & Fu, Lin & Zhang, Shigang, 2018. "Configuration optimization of an enhanced ejector heat exchanger based on an ejector refrigerator and a plate heat exchanger," Energy, Elsevier, vol. 164(C), pages 408-417.
  16. Dénarié, A. & Muscherà, M. & Calderoni, M. & Motta, M., 2019. "Industrial excess heat recovery in district heating: Data assessment methodology and application to a real case study in Milano, Italy," Energy, Elsevier, vol. 166(C), pages 170-182.
  17. Steffen Nielsen & Kenneth Hansen & Rasmus Lund & Diana Moreno, 2020. "Unconventional Excess Heat Sources for District Heating in a National Energy System Context," Energies, MDPI, vol. 13(19), pages 1-18, September.
  18. Igor Cruz & Magnus Wallén & Elin Svensson & Simon Harvey, 2021. "Electricity Generation from Low and Medium Temperature Industrial Excess Heat in the Kraft Pulp and Paper Industry," Energies, MDPI, vol. 14(24), pages 1-27, December.
  19. Paul Christodoulides & Lazaros Aresti & Gregoris P. Panayiotou & Savvas Tassou & Georgios A. Florides, 2022. "Adoption of Waste Heat Recovery Technologies: Reviewing the Relevant Barriers and Recommendations on How to Overcome Them," SN Operations Research Forum, Springer, vol. 3(1), pages 1-21, March.
  20. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
  21. Zhang, Qi & Zhao, Xiaoyu & Lu, Hongyou & Ni, Tuanjie & Li, Yu, 2017. "Waste energy recovery and energy efficiency improvement in China’s iron and steel industry," Applied Energy, Elsevier, vol. 191(C), pages 502-520.
  22. Fabian Bühler & Stefan Petrović & Torben Ommen & Fridolin Müller Holm & Henrik Pieper & Brian Elmegaard, 2018. "Identification and Evaluation of Cases for Excess Heat Utilisation Using GIS," Energies, MDPI, vol. 11(4), pages 1-24, March.
  23. Xu, Z.Y. & Gao, J.T. & Hu, Bin & Wang, R.Z., 2022. "Multi-criterion comparison of compression and absorption heat pumps for ultra-low grade waste heat recovery," Energy, Elsevier, vol. 238(PB).
  24. Bühler, Fabian & Petrović, Stefan & Holm, Fridolin Müller & Karlsson, Kenneth & Elmegaard, Brian, 2018. "Spatiotemporal and economic analysis of industrial excess heat as a resource for district heating," Energy, Elsevier, vol. 151(C), pages 715-728.
  25. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
  26. Marina, A. & Spoelstra, S. & Zondag, H.A. & Wemmers, A.K., 2021. "An estimation of the European industrial heat pump market potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  27. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
  28. Bühler, Fabian & Petrović, Stefan & Karlsson, Kenneth & Elmegaard, Brian, 2017. "Industrial excess heat for district heating in Denmark," Applied Energy, Elsevier, vol. 205(C), pages 991-1001.
  29. Ong, Benjamin H.Y. & Bhadbhade, Navdeep & Olsen, Donald G. & Wellig, Beat, 2023. "Characterizing sector-wide thermal energy profiles for industrial sectors," Energy, Elsevier, vol. 282(C).
  30. Isye Hayatina & Amar Auckaili & Mohammed Farid, 2023. "Review on Salt Hydrate Thermochemical Heat Transformer," Energies, MDPI, vol. 16(12), pages 1-23, June.
  31. Luberti, Mauro & Gowans, Robert & Finn, Patrick & Santori, Giulio, 2022. "An estimate of the ultralow waste heat available in the European Union," Energy, Elsevier, vol. 238(PC).
  32. Albert, Max D.A. & Bennett, Katherine O. & Adams, Charlotte A. & Gluyas, Jon G., 2022. "Waste heat mapping: A UK study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
  33. Edyta Dudkiewicz & Natalia Fidorów-Kaprawy & Paweł Szałański, 2022. "Environmental Benefits and Energy Savings from Gas Radiant Heaters’ Flue-Gas Heat Recovery," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
  34. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
  35. Xiaofeng Guo & Alain Pascal Goumba & Cheng Wang, 2019. "Comparison of Direct and Indirect Active Thermal Energy Storage Strategies for Large-Scale Solar Heating Systems," Energies, MDPI, vol. 12(10), pages 1-18, May.
  36. Couvreur, Kenny & Beyne, Wim & De Paepe, Michel & Lecompte, Steven, 2020. "Hot water storage for increased electricity production with organic Rankine cycle from intermittent residual heat sources in the steel industry," Energy, Elsevier, vol. 200(C).
  37. Pelda, Johannes & Stelter, Friederike & Holler, Stefan, 2020. "Potential of integrating industrial waste heat and solar thermal energy into district heating networks in Germany," Energy, Elsevier, vol. 203(C).
  38. Lygnerud, Kristina & Werner, Sven, 2018. "Risk assessment of industrial excess heat recovery in district heating systems," Energy, Elsevier, vol. 151(C), pages 430-441.
  39. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
  40. Jiang, Binfan & Xia, Dehong & Zhang, Huili & Pei, Hao & Liu, Xiangjun, 2020. "Effective waste heat recovery from industrial high-temperature granules: A Moving Bed Indirect Heat Exchanger with embedded agitation," Energy, Elsevier, vol. 208(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.