IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v35y2010i1p288-292.html
   My bibliography  Save this item

Interaction between biomass and different rank coals during co-pyrolysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Wu, Dongyin & Wang, Yuhao & Wang, Yang & Li, Sen & Wei, Xiaolin, 2016. "Release of alkali metals during co-firing biomass and coal," Renewable Energy, Elsevier, vol. 96(PA), pages 91-97.
  2. Saad Saeed & Mahmood Saleem & Abdullah Durrani & Junaid Haider & Muzaffar Riaz & Sana Saeed & Muhammad Abdul Qyyum & Abdul-Sattar Nizami & Mohammad Rehan & Moonyong Lee, 2021. "Determination of Kinetic and Thermodynamic Parameters of Pyrolysis of Coal and Sugarcane Bagasse Blends Pretreated by Ionic Liquid: A Step towards Optimization of Energy Systems," Energies, MDPI, vol. 14(9), pages 1-13, April.
  3. Grzegorz Maj & Joanna Szyszlak-Bargłowicz & Grzegorz Zając & Tomasz Słowik & Paweł Krzaczek & Wiesław Piekarski, 2019. "Energy and Emission Characteristics of Biowaste from the Corn Grain Drying Process," Energies, MDPI, vol. 12(22), pages 1-20, November.
  4. Mushtaq, Faisal & Mat, Ramli & Ani, Farid Nasir, 2014. "A review on microwave assisted pyrolysis of coal and biomass for fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 555-574.
  5. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  6. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
  7. Lu, Ke-Miao & Lee, Wen-Jhy & Chen, Wei-Hsin & Lin, Ta-Chang, 2013. "Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends," Applied Energy, Elsevier, vol. 105(C), pages 57-65.
  8. Liu, Zhengang & Quek, Augustine & Parshetti, Ganesh & Jain, Akshay & Srinivasan, M.P. & Hoekman, S. Kent & Balasubramanian, Rajasekhar, 2013. "A study of nitrogen conversion and polycyclic aromatic hydrocarbon (PAH) emissions during hydrochar–lignite co-pyrolysis," Applied Energy, Elsevier, vol. 108(C), pages 74-81.
  9. Linards Goldšteins & Māris Gunārs Dzenis & Viesturs Šints & Raimonds Valdmanis & Maija Zaķe & Alexandr Arshanitsa, 2022. "Microwave Pre-Treatment and Blending of Biomass Pellets for Sustainable Use of Local Energy Resources in Energy Production," Energies, MDPI, vol. 15(9), pages 1-21, May.
  10. Folgueras, M.B. & Díaz, R.M., 2010. "Influence of FeCl3 and lime added to sludge on sludge–coal pyrolysis," Energy, Elsevier, vol. 35(12), pages 5250-5259.
  11. Afolabi, Oluwasola O.D. & Sohail, M. & Thomas, C.L.P., 2017. "Characterization of solid fuel chars recovered from microwave hydrothermal carbonization of human biowaste," Energy, Elsevier, vol. 134(C), pages 74-89.
  12. Guo, Feiqiang & Li, Xiaolei & Wang, Yan & Liu, Yuan & Li, Tiantao & Guo, Chenglong, 2017. "Characterization of Zhundong lignite and biomass co-pyrolysis in a thermogravimetric analyzer and a fixed bed reactor," Energy, Elsevier, vol. 141(C), pages 2154-2163.
  13. Zhou, Limin & Zou, Hongbin & Wang, Yun & Le, Zhanggao & Liu, Zhirong & Adesina, Adesoji A., 2017. "Effect of potassium on thermogravimetric behavior and co-pyrolytic kinetics of wood biomass and low density polyethylene," Renewable Energy, Elsevier, vol. 102(PA), pages 134-141.
  14. Yang, Ziqi & Wu, Yuanqing & Zhang, Zisheng & Li, Hong & Li, Xingang & Egorov, Roman I. & Strizhak, Pavel A. & Gao, Xin, 2019. "Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 384-398.
  15. Shweta & Sergio C. Capareda & Baldev Raj Kamboj & Kamla Malik & Karmal Singh & Dalip Kumar Bhisnoi & Sandeep Arya, 2024. "Biomass Resources and Biofuel Technologies: A Focus on Indian Development," Energies, MDPI, vol. 17(2), pages 1-27, January.
  16. Afolabi, Oluwasola O.D. & Sohail, M. & Cheng, Yu-Ling, 2020. "Optimisation and characterisation of hydrochar production from spent coffee grounds by hydrothermal carbonisation," Renewable Energy, Elsevier, vol. 147(P1), pages 1380-1391.
  17. Alejandro Lyons Ceron & Richard Ochieng & Shiplu Sarker & Oliver Järvik & Alar Konist, 2024. "Co-Pyrolysis of Woody Biomass and Oil Shale—A Kinetics and Modelling Study," Energies, MDPI, vol. 17(5), pages 1-18, February.
  18. Qiu, Shuxing & Zhang, Shengfu & Zhou, Xiaohu & Zhang, Qingyun & Qiu, Guibao & Hu, Meilong & You, Zhixiong & Wen, Liangying & Bai, Chenguang, 2019. "Thermal behavior and organic functional structure of poplar-fat coal blends during co-pyrolysis," Renewable Energy, Elsevier, vol. 136(C), pages 308-316.
  19. Hameed, Zeeshan & Aslam, Muhammad & Khan, Zakir & Maqsood, Khuram & Atabani, A.E. & Ghauri, Moinuddin & Khurram, Muhammad Shahzad & Rehan, Mohammad & Nizami, Abdul-Sattar, 2021. "Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
  20. Yurdakul, Sema, 2016. "Determination of co-combustion properties and thermal kinetics of poultry litter/coal blends using thermogravimetry," Renewable Energy, Elsevier, vol. 89(C), pages 215-223.
  21. Merdun, Hasan & Laougé, Zakari Boubacar, 2021. "Kinetic and thermodynamic analyses during co-pyrolysis of greenhouse wastes and coal by TGA," Renewable Energy, Elsevier, vol. 163(C), pages 453-464.
  22. Liu, Chao & Liu, Jingyong & Evrendilek, Fatih & Xie, Wuming & Kuo, Jiahong & Buyukada, Musa, 2020. "Bioenergy and emission characterizations of catalytic combustion and pyrolysis of litchi peels via TG-FTIR-MS and Py-GC/MS," Renewable Energy, Elsevier, vol. 148(C), pages 1074-1093.
  23. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
  24. Karasmanaki, Evangelia & Tsantopoulos, Georgios, 2019. "Exploring future scientists' awareness about and attitudes towards renewable energy sources," Energy Policy, Elsevier, vol. 131(C), pages 111-119.
  25. Pérez-Jeldres, Rubén & Cornejo, Pablo & Flores, Mauricio & Gordon, Alfredo & García, Ximena, 2017. "A modeling approach to co-firing biomass/coal blends in pulverized coal utility boilers: Synergistic effects and emissions profiles," Energy, Elsevier, vol. 120(C), pages 663-674.
  26. Ji, Xi & Liu, Yifang & Meng, Jing & Wu, Xudong, 2020. "Global supply chain of biomass use and the shift of environmental welfare from primary exploiters to final consumers," Applied Energy, Elsevier, vol. 276(C).
  27. Wang, Qing & Zhao, Weizhen & Liu, Hongpeng & Jia, Chunxia & Li, Shaohua, 2011. "Interactions and kinetic analysis of oil shale semi-coke with cornstalk during co-combustion," Applied Energy, Elsevier, vol. 88(6), pages 2080-2087, June.
  28. Gaurav, N. & Sivasankari, S. & Kiran, GS & Ninawe, A. & Selvin, J., 2017. "Utilization of bioresources for sustainable biofuels: A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 205-214.
  29. Aime Hilaire Tchapda & Sarma V. Pisupati, 2014. "A Review of Thermal Co-Conversion of Coal and Biomass/Waste," Energies, MDPI, vol. 7(3), pages 1-51, February.
  30. Sahu, S.G. & Chakraborty, N. & Sarkar, P., 2014. "Coal–biomass co-combustion: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 575-586.
  31. Kong, Lingjun & Tian, ShuangHong & Li, Zhaohui & Luo, Rongshu & Chen, Dingsheng & Tu, YuTing & Xiong, Ya, 2013. "Conversion of recycled sawdust into high HHV and low NOx emission bio-char pellets using lignin and calcium hydroxide blended binders," Renewable Energy, Elsevier, vol. 60(C), pages 559-565.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.