IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v35y2010i11p2590-2601.html
   My bibliography  Save this item

Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hooshang, M. & Askari Moghadam, R. & AlizadehNia, S., 2016. "Dynamic response simulation and experiment for gamma-type Stirling engine," Renewable Energy, Elsevier, vol. 86(C), pages 192-205.
  2. Carmela Perozziello & Lavinia Grosu & Bianca Maria Vaglieco, 2021. "Free-Piston Stirling Engine Technologies and Models: A Review," Energies, MDPI, vol. 14(21), pages 1-22, October.
  3. Chang-Sheng Lin & Jui-Kai Liu & Hung-Tse Chiang, 2020. "A U-Shaped Oscillatory Liquid Piston Compression Air Conditioner Driven by Rotary Displacer Stirling Engine," Energies, MDPI, vol. 13(16), pages 1-15, August.
  4. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2012. "Optimization of geometrical parameters for Stirling engines based on theoretical analysis," Applied Energy, Elsevier, vol. 92(C), pages 395-405.
  5. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2011. "Analytical model for predicting the effect of operating speed on shaft power output of Stirling engines," Energy, Elsevier, vol. 36(10), pages 5899-5908.
  6. Chen, Wen-Lih & Chen, Chao-Kuang & Fang, Mao-Ju & Yang, Yu-Ching, 2018. "A numerical study on applying slot-grooved displacer cylinder to a γ-type medium-temperature-differential stirling engine," Energy, Elsevier, vol. 144(C), pages 679-693.
  7. García-Canseco, Eloísa & Alvarez-Aguirre, Alejandro & Scherpen, Jacquelien M.A., 2015. "Modeling for control of a kinematic wobble-yoke Stirling engine," Renewable Energy, Elsevier, vol. 75(C), pages 808-817.
  8. Hooshang, M. & Askari Moghadam, R. & Alizadeh Nia, S. & Masouleh, M. Tale, 2015. "Optimization of Stirling engine design parameters using neural networks," Renewable Energy, Elsevier, vol. 74(C), pages 855-866.
  9. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2013. "Theoretical model for predicting thermodynamic behavior of thermal-lag Stirling engine," Energy, Elsevier, vol. 49(C), pages 218-228.
  10. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2014. "Optimization of rhombic drive mechanism used in beta-type Stirling engine based on dimensionless analysis," Energy, Elsevier, vol. 64(C), pages 970-978.
  11. Patel, Vivek & Savsani, Vimal, 2016. "Multi-objective optimization of a Stirling heat engine using TS-TLBO (tutorial training and self learning inspired teaching-learning based optimization) algorithm," Energy, Elsevier, vol. 95(C), pages 528-541.
  12. Thomas, Seth & Barth, Eric J., 2022. "Active Stirling Thermocompressor: Modelling and effects of controlled displacer motion profile on work output," Applied Energy, Elsevier, vol. 327(C).
  13. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2012. "Combining dynamic and thermodynamic models for dynamic simulation of a beta-type Stirling engine with rhombic-drive mechanism," Renewable Energy, Elsevier, vol. 37(1), pages 161-173.
  14. Marion, Michaël & Louahlia, Hasna & Gualous, Hamid, 2016. "Performances of a CHP Stirling system fuelled with glycerol," Renewable Energy, Elsevier, vol. 86(C), pages 182-191.
  15. Bert, Juliette & Chrenko, Daniela & Sophy, Tonino & Le Moyne, Luis & Sirot, Frédéric, 2014. "Simulation, experimental validation and kinematic optimization of a Stirling engine using air and helium," Energy, Elsevier, vol. 78(C), pages 701-712.
  16. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Sadatsakkak, Seyed Abbas & Feidt, Michel, 2015. "Connectionist intelligent model estimates output power and torque of stirling engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 871-883.
  17. Bert, Juliette & Chrenko, Daniela & Sophy, Tonino & Le Moyne, Luis & Sirot, Frédéric, 2012. "Zero dimensional finite-time thermodynamic, three zones numerical model of a generic Stirling and its experimental validation," Renewable Energy, Elsevier, vol. 47(C), pages 167-174.
  18. Valenti, G. & Silva, P. & Fergnani, N. & Campanari, S. & Ravidà, A. & Di Marcoberardino, G. & Macchi, E., 2015. "Experimental and numerical study of a micro-cogeneration Stirling unit under diverse conditions of the working fluid," Applied Energy, Elsevier, vol. 160(C), pages 920-929.
  19. Luo, Zhongyang & Sultan, Umair & Ni, Mingjiang & Peng, Hao & Shi, Bingwei & Xiao, Gang, 2016. "Multi-objective optimization for GPU3 Stirling engine by combining multi-objective algorithms," Renewable Energy, Elsevier, vol. 94(C), pages 114-125.
  20. Yousefzadeh, H. & Tavakolpour-Saleh, A.R., 2021. "A novel unified dynamic-thermodynamic method for estimating damping and predicting performance of kinematic Stirling engines," Energy, Elsevier, vol. 224(C).
  21. Cheng, Chin-Hsiang & Yang, Hang-Suin & Keong, Lam, 2013. "Theoretical and experimental study of a 300-W beta-type Stirling engine," Energy, Elsevier, vol. 59(C), pages 590-599.
  22. Solmaz, Hamit & Safieddin Ardebili, Seyed Mohammad & Aksoy, Fatih & Calam, Alper & Yılmaz, Emre & Arslan, Muhammed, 2020. "Optimization of the operating conditions of a beta-type rhombic drive stirling engine by using response surface method," Energy, Elsevier, vol. 198(C).
  23. Erol, Derviş & Yaman, Hayri & Doğan, Battal, 2017. "A review development of rhombic drive mechanism used in the Stirling engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1044-1067.
  24. Mojtaba Alborzi & Faramarz Sarhaddi & Fatemeh Sobhnamayan, 2019. "Optimization of the thermal lag Stirling engine performance," Energy & Environment, , vol. 30(1), pages 156-175, February.
  25. Wang, Kai & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "A transient one-dimensional numerical model for kinetic Stirling engine," Applied Energy, Elsevier, vol. 183(C), pages 775-790.
  26. Peter Durcansky & Radovan Nosek & Jozef Jandacka, 2020. "Use of Stirling Engine for Waste Heat Recovery," Energies, MDPI, vol. 13(16), pages 1-15, August.
  27. Patel, Vivek & Savsani, Vimal & Mudgal, Anurag, 2017. "Many-objective thermodynamic optimization of Stirling heat engine," Energy, Elsevier, vol. 125(C), pages 629-642.
  28. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2011. "Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models," Renewable Energy, Elsevier, vol. 36(2), pages 714-725.
  29. Chin-Hsiang Cheng & Duc-Thuan Phung, 2021. "Numerical Optimization of the β-Type Stirling Engine Performance Using the Variable-Step Simplified Conjugate Gradient Method," Energies, MDPI, vol. 14(23), pages 1-14, November.
  30. Vakis, Antonis I. & Anagnostopoulos, John S., 2016. "Mechanical design and modeling of a single-piston pump for the novel power take-off system of a wave energy converter," Renewable Energy, Elsevier, vol. 96(PA), pages 531-547.
  31. Mabrouk, M.T. & Kheiri, A. & Feidt, M., 2015. "Effect of leakage losses on the performance of a β type Stirling engine," Energy, Elsevier, vol. 88(C), pages 111-117.
  32. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah, 2017. "Thermal models for analysis of performance of Stirling engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 168-184.
  33. Altin, Murat & Okur, Melih & Ipci, Duygu & Halis, Serdar & Karabulut, Halit, 2018. "Thermodynamic and dynamic analysis of an alpha type Stirling engine with Scotch Yoke mechanism," Energy, Elsevier, vol. 148(C), pages 855-865.
  34. Mohammad Hossein Ahmadi & Mohammad-Ali Ahmadi & Mehdi Mehrpooya & Marc A. Rosen, 2015. "Using GMDH Neural Networks to Model the Power and Torque of a Stirling Engine," Sustainability, MDPI, vol. 7(2), pages 1-13, February.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.