IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v33y2008i6p1237-1250.html
   My bibliography  Save this item

Wind speed spatial estimation for energy planning in Sicily: Introduction and statistical analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Tar, Károly & Farkas, István & Rózsavölgyi, Kornél, 2011. "Climatic conditions for operation of wind turbines in Hungary," Renewable Energy, Elsevier, vol. 36(2), pages 510-518.
  2. Veronesi, F. & Grassi, S. & Raubal, M., 2016. "Statistical learning approach for wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 836-850.
  3. Petinrin, J.O. & Shaaban, Mohamed, 2015. "Renewable energy for continuous energy sustainability in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 967-981.
  4. Maciej J. Nowak & Agnieszka Brelik & Anna Oleńczuk-Paszel & Monika Śpiewak-Szyjka & Justyna Przedańska, 2023. "Spatial Conflicts concerning Wind Power Plants—A Case Study of Spatial Plans in Poland," Energies, MDPI, vol. 16(2), pages 1-20, January.
  5. Marvuglia, Antonino & Messineo, Antonio, 2012. "Monitoring of wind farms’ power curves using machine learning techniques," Applied Energy, Elsevier, vol. 98(C), pages 574-583.
  6. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
  7. Houndekindo, Freddy & Ouarda, Taha B.M.J., 2025. "LSTM and Transformer-based framework for bias correction of ERA5 hourly wind speeds," Energy, Elsevier, vol. 328(C).
  8. Fadare, D.A., 2010. "The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria," Applied Energy, Elsevier, vol. 87(3), pages 934-942, March.
  9. Xydis, G. & Koroneos, C. & Loizidou, M., 2009. "Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: A case study in Southern Greece," Applied Energy, Elsevier, vol. 86(11), pages 2411-2420, November.
  10. Hernández-Escobedo, Q. & Saldaña-Flores, R. & Rodríguez-García, E.R. & Manzano-Agugliaro, F., 2014. "Wind energy resource in Northern Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 890-914.
  11. Soulis, Konstantinos X. & Manolakos, Dimitris & Ntavou, Erika & Kosmadakis, George, 2022. "A geospatial analysis approach for the operational assessment of solar ORC systems. Case study: Performance evaluation of a two-stage solar ORC engine in Greece," Renewable Energy, Elsevier, vol. 181(C), pages 116-128.
  12. Ouammi, Ahmed & Sacile, Roberto & Zejli, Driss & Mimet, Abdelaziz & Benchrifa, Rachid, 2010. "Sustainability of a wind power plant: Application to different Moroccan sites," Energy, Elsevier, vol. 35(10), pages 4226-4236.
  13. Leer, Donald & Chang, Byungik & Chen, Gerald & Carr, David & Starcher, Kenneth & Issa, Roy, 2013. "Windtane contour map of the state of Texas," Renewable Energy, Elsevier, vol. 58(C), pages 140-150.
  14. Calif, Rudy & Emilion, Richard & Soubdhan, Ted, 2011. "Classification of wind speed distributions using a mixture of Dirichlet distributions," Renewable Energy, Elsevier, vol. 36(11), pages 3091-3097.
  15. Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
  16. Liu, Heping & Shi, Jing & Erdem, Ergin, 2010. "Prediction of wind speed time series using modified Taylor Kriging method," Energy, Elsevier, vol. 35(12), pages 4870-4879.
  17. Morano, Pierluigi & Tajani, Francesco & Locurcio, Marco, 2017. "GIS application and econometric analysis for the verification of the financial feasibility of roof-top wind turbines in the city of Bari (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 999-1010.
  18. Beccali, M. & Cirrincione, G. & Marvuglia, A. & Serporta, C., 2010. "Estimation of wind velocity over a complex terrain using the Generalized Mapping Regressor," Applied Energy, Elsevier, vol. 87(3), pages 884-893, March.
  19. Samuel Van Ackere & Greet Van Eetvelde & David Schillebeeckx & Enrica Papa & Karel Van Wyngene & Lieven Vandevelde, 2015. "Wind Resource Mapping Using Landscape Roughness and Spatial Interpolation Methods," Energies, MDPI, vol. 8(8), pages 1-22, August.
  20. González-Longatt, Francisco & Medina, Humberto & Serrano González, Javier, 2015. "Spatial interpolation and orographic correction to estimate wind energy resource in Venezuela," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 1-16.
  21. Namrye Son & Seunghak Yang & Jeongseung Na, 2019. "Hybrid Forecasting Model for Short-Term Wind Power Prediction Using Modified Long Short-Term Memory," Energies, MDPI, vol. 12(20), pages 1-17, October.
  22. Wekesa, David Wafula & Wang, Cong & Wei, Yingjie & Kamau, Joseph N. & Danao, Louis Angelo M., 2015. "A numerical analysis of unsteady inflow wind for site specific vertical axis wind turbine: A case study for Marsabit and Garissa in Kenya," Renewable Energy, Elsevier, vol. 76(C), pages 648-661.
  23. Lagorse, Jeremy & Paire, Damien & Miraoui, Abdellatif, 2010. "A multi-agent system for energy management of distributed power sources," Renewable Energy, Elsevier, vol. 35(1), pages 174-182.
  24. Masseran, N. & Razali, A.M. & Ibrahim, K. & Wan Zin, W.Z., 2012. "Evaluating the wind speed persistence for several wind stations in Peninsular Malaysia," Energy, Elsevier, vol. 37(1), pages 649-656.
  25. Hur, J. & Baldick, R., 2016. "A new merit function to accommodate high wind power penetration of WGRs (wind generating resources)," Energy, Elsevier, vol. 108(C), pages 34-40.
  26. Qiaomu Zhu & Jinfu Chen & Lin Zhu & Xianzhong Duan & Yilu Liu, 2018. "Wind Speed Prediction with Spatio–Temporal Correlation: A Deep Learning Approach," Energies, MDPI, vol. 11(4), pages 1-18, March.
  27. Christopher Jung, 2016. "High Spatial Resolution Simulation of Annual Wind Energy Yield Using Near-Surface Wind Speed Time Series," Energies, MDPI, vol. 9(5), pages 1-20, May.
  28. Collados-Lara, Antonio-Juan & Baena-Ruiz, Leticia & Pulido-Velazquez, David & Pardo-Igúzquiza, Eulogio, 2022. "Data-driven mapping of hourly wind speed and its potential energy resources: A sensitivity analysis," Renewable Energy, Elsevier, vol. 199(C), pages 87-102.
  29. Cellura, Maurizio & Guarino, Francesco & Longo, Sonia & Mistretta, Marina, 2015. "Different energy balances for the redesign of nearly net zero energy buildings: An Italian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 100-112.
  30. Hanslian, David & Hošek, Jiří, 2015. "Combining the VAS 3D interpolation method and Wind Atlas methodology to produce a high-resolution wind resource map for the Czech Republic," Renewable Energy, Elsevier, vol. 77(C), pages 291-299.
  31. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
  32. repec:isu:genstf:201001010800002361 is not listed on IDEAS
  33. de la Rosa, Juan José González & Pérez, Agustín Agüera & Palomares Salas, José Carlos & Ramiro Leo, José Gabriel & Muñoz, Antonio Moreno, 2011. "A novel inference method for local wind conditions using genetic fuzzy systems," Renewable Energy, Elsevier, vol. 36(6), pages 1747-1753.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.