IDEAS home Printed from https://ideas.repec.org/r/eee/phsmap/v369y2006i2p343-353.html
   My bibliography  Save this item

Markov processes, Hurst exponents, and nonlinear diffusion equations: With application to finance

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zunino, Luciano & Tabak, Benjamin M. & Serinaldi, Francesco & Zanin, Massimiliano & Pérez, Darío G. & Rosso, Osvaldo A., 2011. "Commodity predictability analysis with a permutation information theory approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 876-890.
  2. Sensoy, Ahmet & Fabozzi, Frank J. & Eraslan, Veysel, 2017. "Predictability dynamics of emerging sovereign CDS markets," Economics Letters, Elsevier, vol. 161(C), pages 5-9.
  3. Aleksejus Kononovicius & Vygintas Gontis, 2019. "Approximation of the first passage time distribution for the birth-death processes," Papers 1902.00924, arXiv.org.
  4. Javier Morales & V'ictor Tercero & Fernando Camacho & Eduardo Cordero & Luis L'opez & F-Javier Almaguer, 2014. "Trend and Fractality Assessment of Mexico's Stock Exchange," Papers 1411.3399, arXiv.org.
  5. Wiston Adrian Risso, 2009. "The informational efficiency: the emerging markets versus the developed markets," Applied Economics Letters, Taylor & Francis Journals, vol. 16(5), pages 485-487.
  6. V. Gontis & A. Kononovicius, 2017. "Burst and inter-burst duration statistics as empirical test of long-range memory in the financial markets," Papers 1701.01255, arXiv.org.
  7. Risso, Wiston Adrián, 2008. "The informational efficiency and the financial crashes," Research in International Business and Finance, Elsevier, vol. 22(3), pages 396-408, September.
  8. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
  9. Seemann, Lars & Hua, Jia-Chen & McCauley, Joseph L. & Gunaratne, Gemunu H., 2012. "Ensemble vs. time averages in financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6024-6032.
  10. Vygintas Gontis, 2023. "Discrete $q$-exponential limit order cancellation time distribution," Papers 2306.00093, arXiv.org, revised Oct 2023.
  11. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
  12. Florindo, Joao B. & Lima, Reneé Rodrigues & dos Santos, Francisco Alves & Alves, Jerson Leite, 2025. "GHENet: Attention-based Hurst exponents for the forecasting of stock market indexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 667(C).
  13. Mynhardt, H. R. & Plastun, Alex & Makarenko, Inna, 2014. "Behavior of Financial Markets Efficiency During the Financial Market Crisis: 2007-2009," MPRA Paper 58942, University Library of Munich, Germany.
  14. Seemann, Lars & McCauley, Joseph L. & Gunaratne, Gemunu H., 2011. "Intraday volatility and scaling in high frequency foreign exchange markets," International Review of Financial Analysis, Elsevier, vol. 20(3), pages 121-126, June.
  15. Sensoy, Ahmet & Aras, Guler & Hacihasanoglu, Erk, 2015. "Predictability dynamics of Islamic and conventional equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 222-248.
  16. Vygintas Gontis & Aleksejus Kononovicius, 2017. "Spurious memory in non-equilibrium stochastic models of imitative behavior," Papers 1707.09801, arXiv.org.
  17. Giuseppe Pernagallo, 2025. "Random walks, Hurst exponent, and market efficiency," Quality & Quantity: International Journal of Methodology, Springer, vol. 59(2), pages 1097-1119, April.
  18. Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.
  19. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.
  20. Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
  21. Miśkiewicz, Janusz & Ausloos, Marcel, 2008. "Correlation measure to detect time series distances, whence economy globalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6584-6594.
  22. Hua, Jia-Chen & Chen, Lijian & Falcon, Liberty & McCauley, Joseph L. & Gunaratne, Gemunu H., 2015. "Variable diffusion in stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 221-233.
  23. Vygintas Gontis, 2021. "Order flow in the financial markets from the perspective of the Fractional L\'evy stable motion," Papers 2105.02057, arXiv.org, revised Nov 2021.
  24. Gontis, V. & Kononovicius, A., 2017. "Burst and inter-burst duration statistics as empirical test of long-range memory in the financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 266-272.
  25. Rytis Kazakevicius & Aleksejus Kononovicius & Bronislovas Kaulakys & Vygintas Gontis, 2021. "Understanding the nature of the long-range memory phenomenon in socioeconomic systems," Papers 2108.02506, arXiv.org, revised Aug 2021.
  26. Morales, Javier & Tercero, Víctor & Camacho-Vallejo, José-Fernando & Cordero, Alvaro E. & López Nerio, Luis E. & Almaguer, F-Javier, 2016. "Trend and fractality assessment of Mexico’s stock exchange," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 103-113.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.