IDEAS home Printed from https://ideas.repec.org/r/eee/jotrge/v36y2014icp134-140.html
   My bibliography  Save this item

Exploring the impacts of land use by service coverage and station-level accessibility on rail transit ridership

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Wang, Chih-Hao & Chen, Na, 2015. "A GIS-based spatial statistical approach to modeling job accessibility by transportation mode: case study of Columbus, Ohio," Journal of Transport Geography, Elsevier, vol. 45(C), pages 1-11.
  2. Chidambara, 2019. "Walking the First/Last Mile to/from Transit: Placemaking a Key Determinant," Urban Planning, Cogitatio Press, vol. 4(2), pages 183-195.
  3. Kexin Lei & Quanhua Hou & Weijia Li & Meng Zhao & Jizhe Zhou & Lingda Zhang & Shihan Chen & Yaqiong Duan, 2022. "The Impact of Land Use on Time-Varying Passenger Flow Based on Site Classification," Land, MDPI, vol. 11(12), pages 1-19, December.
  4. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Teller, David, 2020. "Study design impacts on built environment and transit use research," Journal of Transport Geography, Elsevier, vol. 82(C).
  5. Johansson, Erik & Camporeale, Rosalia & Palmqvist, Carl-William, 2020. "Railway network design and regional labour markets in Sweden," Research in Transportation Economics, Elsevier, vol. 83(C).
  6. Du, Qiang & Zhou, Yuqing & Huang, Youdan & Wang, Yalei & Bai, Libiao, 2022. "Spatiotemporal exploration of the non-linear impacts of accessibility on metro ridership," Journal of Transport Geography, Elsevier, vol. 102(C).
  7. Li, Shaoying & Lyu, Dijiang & Huang, Guanping & Zhang, Xiaohu & Gao, Feng & Chen, Yuting & Liu, Xiaoping, 2020. "Spatially varying impacts of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China," Journal of Transport Geography, Elsevier, vol. 82(C).
  8. Gao, Fan & Han, Chunyang & Yang, Linchuan & Liang, Jian & He, Xuan & Li, Fan, 2024. "Analyzing spatiotemporal distribution patterns of metro ridership: Comparison between common-class and business-class carriage service," Journal of Transport Geography, Elsevier, vol. 115(C).
  9. Pei Yin & Jing Cheng & Miaojuan Peng, 2022. "Analyzing the Passenger Flow of Urban Rail Transit Stations by Using Entropy Weight-Grey Correlation Model: A Case Study of Shanghai in China," Mathematics, MDPI, vol. 10(19), pages 1-23, September.
  10. Andersson, David Emanuel & Shyr, Oliver F. & Yang, Jimmy, 2021. "Neighbourhood effects on station-level transit use: Evidence from the Taipei metro," Journal of Transport Geography, Elsevier, vol. 94(C).
  11. Gao, Feng & Chen, Xin & Liao, Shunyi & Chen, Wangyang & Feng, Lei & Wu, Jiemin & Zhou, Qingya & Zheng, Yuming & Li, Guanyao & Li, Shaoying, 2024. "Crafting a jogging-friendly city: Harnessing big data to evaluate the runnability of urban streets," Journal of Transport Geography, Elsevier, vol. 121(C).
  12. Lyons, Torrey & Ewing, Reid & Tian, Guang, 2025. "Coverage vs frequency: Is spatial coverage or temporal frequency more impactful on transit ridership?," Journal of Transport Geography, Elsevier, vol. 122(C).
  13. Shafiq, Mudassar & Lobo, António & Couto, António, 2024. "Equity of access to rail services by complementary motorized and active modes," Journal of Transport Geography, Elsevier, vol. 121(C).
  14. Chen, Enhui & Stathopoulos, Amanda & Nie, Yu (Marco), 2022. "Transfer station choice in a multimodal transit system: An empirical study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 337-355.
  15. Caigang, Zhuang & Shaoying, Li & Zhangzhi, Tan & Feng, Gao & Zhifeng, Wu, 2022. "Nonlinear and threshold effects of traffic condition and built environment on dockless bike sharing at street level," Journal of Transport Geography, Elsevier, vol. 102(C).
  16. Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2018. "How urban density, network topology and socio-economy influence public transport ridership: Empirical evidence from 48 European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 72(C), pages 50-63.
  17. Wu, Hao & Lee, Jinwoo (Brian) & Levinson, David, 2023. "The node-place model, accessibility, and station level transit ridership," Journal of Transport Geography, Elsevier, vol. 113(C).
  18. Meng Zhao & Haiyan Tong & Bo Li & Yaqiong Duan & Yubai Li & Jianpo Wang & Kexin Lei, 2022. "Analysis of Land Use Optimization of Metro Station Areas Based on Two-Way Balanced Ridership in Xi’an," Land, MDPI, vol. 11(8), pages 1-20, July.
  19. Chidambara, 2019. "Walking the First/Last Mile to/from Transit: Placemaking a Key Determinant," Urban Planning, Cogitatio Press, vol. 4(2), pages 183-195.
  20. Zhao, Liyuan & Shen, Le, 2019. "The impacts of rail transit on future urban land use development: A case study in Wuhan, China," Transport Policy, Elsevier, vol. 81(C), pages 396-405.
  21. Cummings, Christopher & Mahmassani, Hani, 2022. "Does intercity rail station placement matter? Expansion of the node-place model to identify station location impacts on Amtrak ridership," Journal of Transport Geography, Elsevier, vol. 99(C).
  22. Shao, Rui & Derudder, Ben & Yang, Yongchun & Witlox, Frank, 2023. "The association between transit accessibility and space-time flexibility of shopping travel: On the moderating role of ICT use," Journal of Transport Geography, Elsevier, vol. 111(C).
  23. Carlos Romero & Clara Zamorano & Emilio Ortega & Belén Martín, 2021. "Access to Secondary HSR Stations in the Urban Periphery: A Generalised Cost-Based Assessment," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
  24. Yu, Le & Xie, Binglei & Chan, Edwin H.W., 2019. "Exploring impacts of the built environment on transit travel: Distance, time and mode choice, for urban villages in Shenzhen, China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 57-71.
  25. Dohyung Kim & Yongjin Ahn & Simon Choi & Kwangkoo Kim, 2016. "Sustainable Mobility: Longitudinal Analysis of Built Environment on Transit Ridership," Sustainability, MDPI, vol. 8(10), pages 1-14, October.
  26. Xin Tong & Yaowu Wang & Edwin H. W. Chan & Qingfeng Zhou, 2018. "Correlation between Transit-Oriented Development (TOD), Land Use Catchment Areas, and Local Environmental Transformation," Sustainability, MDPI, vol. 10(12), pages 1-21, December.
  27. Zhuangbin Shi & Ning Zhang & Yang Liu & Wei Xu, 2018. "Exploring Spatiotemporal Variation in Hourly Metro Ridership at Station Level: The Influence of Built Environment and Topological Structure," Sustainability, MDPI, vol. 10(12), pages 1-16, December.
  28. Xin, Mengwei & Shalaby, Amer, 2024. "Investigation of the interaction between urban rail ridership and network topology characteristics using temporal lagged and reciprocal effects: A case study of Chengdu, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
  29. Jiao, Hongzan & Huang, Shibiao & Zhou, Yu, 2023. "Understanding the land use function of station areas based on spatiotemporal similarity in rail transit ridership: A case study in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 109(C).
  30. Gao, Fan & Yang, Linchuan & Han, Chunyang & Tang, Jinjun & Li, Zhitao, 2022. "A network-distance-based geographically weighted regression model to examine spatiotemporal effects of station-level built environments on metro ridership," Journal of Transport Geography, Elsevier, vol. 105(C).
  31. Lijie Yu & Yarong Cong & Kuanmin Chen, 2020. "Determination of the Peak Hour Ridership of Metro Stations in Xi’an, China Using Geographically-Weighted Regression," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.