IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v115y2024ics0966692324000073.html
   My bibliography  Save this article

Analyzing spatiotemporal distribution patterns of metro ridership: Comparison between common-class and business-class carriage service

Author

Listed:
  • Gao, Fan
  • Han, Chunyang
  • Yang, Linchuan
  • Liang, Jian
  • He, Xuan
  • Li, Fan

Abstract

Understanding differentiated services is pivotal for enhancing the appeal and diversity of the metro system, yet this facet has received relatively scant attention in existing literature. To bridge this research gap, our analysis delves into the business-class services offered by the metro and compares them with the common-class offerings. First, we illustrate the spatial and temporal patterns of business- and common-class ridership across stations and hours. Second, we construct two-stage geographically weighted regression models to identify key determinants and their spatiotemporally heterogeneous effects, focusing on land-use patterns, demographic considerations, and intermodal transfer modes. Leveraging one-week smart card data collected in Shenzhen from May 13th to 17th, 2019, our findings underscore the following aspects: (1) Spatial and temporal variations in business-class ridership across stations are linked to diverse land-use configurations. (2) Bus-metro transfers, business establishments, medical facilities, and the proportion of young commuters contribute significantly to the business-class ridership. (3) The emergence of business-class trip is weakly associated with bike-sharing activities but has a strong correlation with bus transfers. (4) Business establishments and medical facilities exhibit nuanced impacts on business-class travel, with excessive aggregation leading to unintended consequences. These insights offer valuable policy implications for fostering the development of business-class services in the metro systems of other Chinese cities.

Suggested Citation

  • Gao, Fan & Han, Chunyang & Yang, Linchuan & Liang, Jian & He, Xuan & Li, Fan, 2024. "Analyzing spatiotemporal distribution patterns of metro ridership: Comparison between common-class and business-class carriage service," Journal of Transport Geography, Elsevier, vol. 115(C).
  • Handle: RePEc:eee:jotrge:v:115:y:2024:i:c:s0966692324000073
    DOI: 10.1016/j.jtrangeo.2024.103798
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692324000073
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2024.103798?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander Armstrong & Joern Meissner, 2010. "Railway Revenue Management: Overview and Models (Operations Research)," Working Papers MRG/0019, Department of Management Science, Lancaster University, revised Jul 2010.
    2. Harbering, Marie & Schlüter, Jan, 2020. "Determinants of transport mode choice in metropolitan areas the case of the metropolitan area of the Valley of Mexico," Journal of Transport Geography, Elsevier, vol. 87(C).
    3. Kwon, Oh Kyoung & Sussman, Joseph M. & Martland, Carl D., 1994. "Developing Insights on Effects of Service Differentiation in Rail Freight Transportation Systems," Transportation Research Forum Proceedings 1990s 319138, Transportation Research Forum.
    4. Yap, Menno & Cats, Oded, 2021. "Taking the path less travelled: Valuation of denied boarding in crowded public transport systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 1-13.
    5. Kim, Hyunmi & Kwon, Sohee & Wu, Seung Kook & Sohn, Keemin, 2014. "Why do passengers choose a specific car of a metro train during the morning peak hours?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 249-258.
    6. Li, Shaoying & Lyu, Dijiang & Huang, Guanping & Zhang, Xiaohu & Gao, Feng & Chen, Yuting & Liu, Xiaoping, 2020. "Spatially varying impacts of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China," Journal of Transport Geography, Elsevier, vol. 82(C).
    7. Zhongqiang Bai & Juanle Wang & Mingming Wang & Mengxu Gao & Jiulin Sun, 2018. "Accuracy Assessment of Multi-Source Gridded Population Distribution Datasets in China," Sustainability, MDPI, vol. 10(5), pages 1-15, April.
    8. Li, Wenxiang & Chen, Shawen & Dong, Jieshuang & Wu, Jingxian, 2021. "Exploring the spatial variations of transfer distances between dockless bike-sharing systems and metros," Journal of Transport Geography, Elsevier, vol. 92(C).
    9. Wang, Yihong & Correia, Gonçalo Homem de Almeida & de Romph, Erik & Timmermans, H.J.P., 2017. "Using metro smart card data to model location choice of after-work activities: An application to Shanghai," Journal of Transport Geography, Elsevier, vol. 63(C), pages 40-47.
    10. Kenneth A. Small & Clifford Winston & Jia Yan, 2005. "Differentiated Road Pricing, Express Lanes and Carpools: Exploiting Heterogeneous Preferences in Policy Design," Working Papers 050616, University of California-Irvine, Department of Economics, revised Mar 2006.
    11. Gao, Fan & Yang, Linchuan & Han, Chunyang & Tang, Jinjun & Li, Zhitao, 2022. "A network-distance-based geographically weighted regression model to examine spatiotemporal effects of station-level built environments on metro ridership," Journal of Transport Geography, Elsevier, vol. 105(C).
    12. Ren, Xinhui & Pan, Na & Jiang, Hong, 2022. "Differentiated pricing for airline ancillary services considering passenger choice behavior heterogeneity and willingness to pay," Transport Policy, Elsevier, vol. 126(C), pages 292-305.
    13. Sung, Hyungun & Choi, Keechoo & Lee, Sugie & Cheon, SangHyun, 2014. "Exploring the impacts of land use by service coverage and station-level accessibility on rail transit ridership," Journal of Transport Geography, Elsevier, vol. 36(C), pages 134-140.
    14. Esmat Zaidan & Ammar Abulibdeh, 2021. "Master Planning and the Evolving Urban Model in the Gulf Cities: Principles, Policies, and Practices for the Transition to Sustainable Urbanism," Planning Practice & Research, Taylor & Francis Journals, vol. 36(2), pages 193-215, March.
    15. Ding, Chuan & Cao, Xinyu & Liu, Chao, 2019. "How does the station-area built environment influence Metrorail ridership? Using gradient boosting decision trees to identify non-linear thresholds," Journal of Transport Geography, Elsevier, vol. 77(C), pages 70-78.
    16. Du, Qiang & Zhou, Yuqing & Huang, Youdan & Wang, Yalei & Bai, Libiao, 2022. "Spatiotemporal exploration of the non-linear impacts of accessibility on metro ridership," Journal of Transport Geography, Elsevier, vol. 102(C).
    17. Jun, Myung-Jin & Choi, Keechoo & Jeong, Ji-Eun & Kwon, Ki-Hyun & Kim, Hee-Jae, 2015. "Land use characteristics of subway catchment areas and their influence on subway ridership in Seoul," Journal of Transport Geography, Elsevier, vol. 48(C), pages 30-40.
    18. Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.
    19. Cao, Jason & Ettema, Dick, 2014. "Satisfaction with travel and residential self-selection: How do preferences moderate the impact of the Hiawatha Light Rail Transit line?," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 7(3), pages 93-108.
    20. Abass, Abubakar Sadiq, 2023. "Prioritised seating arrangement on public transport: A focus on the disadvantaged group," Transport Policy, Elsevier, vol. 131(C), pages 32-44.
    21. Tang, Jinjun & Gao, Fan & Han, Chunyang & Cen, Xuekai & Li, Zhitao, 2021. "Uncovering the spatially heterogeneous effects of shared mobility on public transit and taxi," Journal of Transport Geography, Elsevier, vol. 95(C).
    22. Zhao, Pengjun & Li, Shengxiao, 2017. "Bicycle-metro integration in a growing city: The determinants of cycling as a transfer mode in metro station areas in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 46-60.
    23. Jinjun Tang & Fan Gao & Fang Liu & Wenhui Zhang & Yong Qi, 2019. "Understanding Spatio-Temporal Characteristics of Urban Travel Demand Based on the Combination of GWR and GLM," Sustainability, MDPI, vol. 11(19), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Fan & Yang, Linchuan & Han, Chunyang & Tang, Jinjun & Li, Zhitao, 2022. "A network-distance-based geographically weighted regression model to examine spatiotemporal effects of station-level built environments on metro ridership," Journal of Transport Geography, Elsevier, vol. 105(C).
    2. Wang, Jing & Wan, Feng & Dong, Chunjiao & Yin, Chaoying & Chen, Xiaoyu, 2023. "Spatiotemporal effects of built environment factors on varying rail transit station ridership patterns," Journal of Transport Geography, Elsevier, vol. 109(C).
    3. Du, Qiang & Zhou, Yuqing & Huang, Youdan & Wang, Yalei & Bai, Libiao, 2022. "Spatiotemporal exploration of the non-linear impacts of accessibility on metro ridership," Journal of Transport Geography, Elsevier, vol. 102(C).
    4. Li, Mengya & Kwan, Mei-Po & Hu, Wenyan & Li, Rui & Wang, Jun, 2023. "Examining the effects of station-level factors on metro ridership using multiscale geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 113(C).
    5. Wu, Hao & Lee, Jinwoo (Brian) & Levinson, David, 2023. "The node-place model, accessibility, and station level transit ridership," Journal of Transport Geography, Elsevier, vol. 113(C).
    6. Gao, Kun & Yang, Ying & Gil, Jorge & Qu, Xiaobo, 2023. "Data-driven interpretation on interactive and nonlinear effects of the correlated built environment on shared mobility," Journal of Transport Geography, Elsevier, vol. 110(C).
    7. Liu, Yang & Feng, Tao & Shi, Zhuangbin & He, Mingwei, 2022. "Understanding the route choice behaviour of metro-bikeshare users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 460-475.
    8. Chen, Enhui & Stathopoulos, Amanda & Nie, Yu (Marco), 2022. "Transfer station choice in a multimodal transit system: An empirical study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 337-355.
    9. Xuesong Feng & Zhibin Tao & Xuejun Niu & Zejing Ruan, 2021. "Multi-Objective Land Use Allocation Optimization in View of Overlapped Influences of Rail Transit Stations," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    10. Liu, Xiang & Chen, Xiaohong & Tian, Mingshu & De Vos, Jonas, 2023. "Effects of buffer size on associations between the built environment and metro ridership: A machine learning-based sensitive analysis," Journal of Transport Geography, Elsevier, vol. 113(C).
    11. Su, Shiliang & Zhao, Chong & Zhou, Hao & Li, Bozhao & Kang, Mengjun, 2022. "Unraveling the relative contribution of TOD structural factors to metro ridership: A novel localized modeling approach with implications on spatial planning," Journal of Transport Geography, Elsevier, vol. 100(C).
    12. Lanjing Wang & Chunli Zhao & Xiaofei Liu & Xumei Chen & Chaoyang Li & Tao Wang & Jiani Wu & Yi Zhang, 2021. "Non-Linear Effects of the Built Environment and Social Environment on Bus Use among Older Adults in China: An Application of the XGBoost Model," IJERPH, MDPI, vol. 18(18), pages 1-22, September.
    13. Andersson, David Emanuel & Shyr, Oliver F. & Yang, Jimmy, 2021. "Neighbourhood effects on station-level transit use: Evidence from the Taipei metro," Journal of Transport Geography, Elsevier, vol. 94(C).
    14. Shao, Qifan & Zhang, Wenjia & Cao, Xinyu & Yang, Jiawen & Yin, Jie, 2020. "Threshold and moderating effects of land use on metro ridership in Shenzhen: Implications for TOD planning," Journal of Transport Geography, Elsevier, vol. 89(C).
    15. Zhuangbin Shi & Ning Zhang & Yang Liu & Wei Xu, 2018. "Exploring Spatiotemporal Variation in Hourly Metro Ridership at Station Level: The Influence of Built Environment and Topological Structure," Sustainability, MDPI, vol. 10(12), pages 1-16, December.
    16. Ying Ni & Jiaqi Chen, 2020. "Exploring the Effects of the Built Environment on Two Transfer Modes for Metros: Dockless Bike Sharing and Taxis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    17. Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2018. "How urban density, network topology and socio-economy influence public transport ridership: Empirical evidence from 48 European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 72(C), pages 50-63.
    18. Zhenbao Wang & Jiarui Song & Yuchen Zhang & Shihao Li & Jianlin Jia & Chengcheng Song, 2022. "Spatial Heterogeneity Analysis for Influencing Factors of Outbound Ridership of Subway Stations Considering the Optimal Scale Range of “7D” Built Environments," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    19. Zhou, Yang & Thill, Jean-Claude & Xu, Yang & Fang, Zhixiang, 2021. "Variability in individual home-work activity patterns," Journal of Transport Geography, Elsevier, vol. 90(C).
    20. Lixun Liu & Yujiang Wang & Robin Hickman, 2023. "How Rail Transit Makes a Difference in People’s Multimodal Travel Behaviours: An Analysis with the XGBoost Method," Land, MDPI, vol. 12(3), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:115:y:2024:i:c:s0966692324000073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.