Model Confidence Sets and forecast combination
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Luca De Mori & Pietro Millossovich & Rui Zhu & Steven Haberman, 2024. "Two-Population Mortality Forecasting: An Approach Based on Model Averaging," Risks, MDPI, vol. 12(4), pages 1-17, March.
- Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
- Roccazzella, Francesco & Gambetti, Paolo & Vrins, Frédéric, 2022.
"Optimal and robust combination of forecasts via constrained optimization and shrinkage,"
International Journal of Forecasting, Elsevier, vol. 38(1), pages 97-116.
- Roccazzella, Francesco & Gambetti, Paolo & Vrins, Frédéric, 2020. "Optimal and robust combination of forecasts via constrained optimization and shrinkage," LIDAM Discussion Papers LFIN 2020006, Université catholique de Louvain, Louvain Finance (LFIN).
- Roccazzella, Francesco & Gambetti, Paolo & Vrins, Frédéric, 2021. "Optimal and robust combination of forecasts via constrained optimization and shrinkage," LIDAM Reprints LFIN 2021014, Université catholique de Louvain, Louvain Finance (LFIN).
- Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
- Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2025. "Volatility forecasting and volatility-timing strategies: A machine learning approach," Research in International Business and Finance, Elsevier, vol. 75(C).
- WenJie Wang & Qi Xu & Dandan Fan, 2018. "Stein-Rule Combination Forecasting on RFID Based Supply Chain," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(02), pages 1-13, April.
- Amendola, Alessandra & Braione, Manuela & Candila, Vincenzo & Storti, Giuseppe, 2020. "A Model Confidence Set approach to the combination of multivariate volatility forecasts," International Journal of Forecasting, Elsevier, vol. 36(3), pages 873-891.
- James Younker, 2022. "Calculating Effective Degrees of Freedom for Forecast Combinations and Ensemble Models," Discussion Papers 2022-19, Bank of Canada.
- Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2023.
"Intergenerational actuarial fairness when longevity increases: Amending the retirement age,"
Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 161-184.
- Jorge Miguel Bravo & Mercedes Ayuso & Robert Holzmann & Edward Palmer, 2021. "Intergenerational Actuarial Fairness when Longevity Increases: Amending the Retirement Age," CESifo Working Paper Series 9408, CESifo.
- Chiang, I-Hsuan Ethan & Liao, Yin & Zhou, Qing, 2021. "Modeling the cross-section of stock returns using sensible models in a model pool," Journal of Empirical Finance, Elsevier, vol. 60(C), pages 56-73.
- Wei, Yu & Liang, Chao & Li, Yan & Zhang, Xunhui & Wei, Guiwu, 2020. "Can CBOE gold and silver implied volatility help to forecast gold futures volatility in China? Evidence based on HAR and Ridge regression models," Finance Research Letters, Elsevier, vol. 35(C).
- Chao Liang & Yongan Xu & Zhonglu Chen & Xiafei Li, 2023. "Forecasting China's stock market volatility with shrinkage method: Can Adaptive Lasso select stronger predictors from numerous predictors?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 3689-3699, October.
- Wenting Zhao & Juanjuan Zhao & Xilong Yao & Zhixin Jin & Pan Wang, 2019. "A Novel Adaptive Intelligent Ensemble Model for Forecasting Primary Energy Demand," Energies, MDPI, vol. 12(7), pages 1-28, April.
- Lambert, Thomas & Mishra, Prachi, 2021.
"The Politics of the Paycheck Protection Program,"
CEPR Discussion Papers
16842, C.E.P.R. Discussion Papers.
- Deniz Igan & Thomas Lambert & Prachi Mishra & Eden Zhang, 2024. "The Politics of the Paycheck Protection Program," Working Papers 133, Ashoka University, Department of Economics.
- Deniz Igan & Thomas Lambert & Prachi Mishra & Eden Zhang, 2024. "The Politics of the Paycheck Protection Program," Working Papers 134, Ashoka University, Department of Economics.
- Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024.
"Predicting Bond Return Predictability,"
Management Science, INFORMS, vol. 70(2), pages 931-951, February.
- Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2020. "Predicting bond return predictability," CREATES Research Papers 2020-09, Department of Economics and Business Economics, Aarhus University.
- Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.
- Younker, James, 2025. "Calculating effective degrees of freedom for forecast combinations and ensemble models," Economics Letters, Elsevier, vol. 247(C).
- Mercedes Ayuso & Jorge M. Bravo & Robert Holzmann & Edward Palmer, 2021. "Automatic Indexation of the Pension Age to Life Expectancy: When Policy Design Matters," Risks, MDPI, vol. 9(5), pages 1-28, May.
- Jun Hao & Xiaolei Sun & Qianqian Feng, 2020. "A Novel Ensemble Approach for the Forecasting of Energy Demand Based on the Artificial Bee Colony Algorithm," Energies, MDPI, vol. 13(3), pages 1-25, January.
- Diebold, Francis X. & Shin, Minchul, 2019.
"Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
- Francis X. Diebold & Minchul Shin, 2018. "Machine Learning for Regularized Survey Forecast Combination: Partially Egalitarian Lasso and its Derivatives," PIER Working Paper Archive 18-014, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 17 Aug 2018.
- Francis X. Diebold & Minchul Shin, 2018. "Machine Learning for Regularized Survey Forecast Combination: Partially-Egalitarian Lasso and its Derivatives," NBER Working Papers 24967, National Bureau of Economic Research, Inc.
- Garcia, Márcio G.P. & Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2017. "Real-time inflation forecasting with high-dimensional models: The case of Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 679-693.
- Roccazzella, Francesco & Gambetti, Paolo & Vrins, Frédéric, 2022.
"Optimal and robust combination of forecasts via constrained optimization and shrinkage,"
International Journal of Forecasting, Elsevier, vol. 38(1), pages 97-116.
- Roccazzella, Francesco & Gambetti, Paolo & Vrins, Frédéric, 2022. "Correction to: Optimal and robust combination of forecasts via constrained optimization and shrinkage," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1050-1050.
- Hengzhen Lu & Qiujin Gao & Ling Xiao & Gurjeet Dhesi, 2024. "Forecasting EUA futures volatility with geopolitical risk: evidence from GARCH-MIDAS models," Review of Managerial Science, Springer, vol. 18(7), pages 1917-1943, July.
- Ding, Lili & Zhao, Zhongchao & Wang, Lei, 2022. "Probability density forecasts for natural gas demand in China: Do mixed-frequency dynamic factors matter?," Applied Energy, Elsevier, vol. 312(C).
- Hongyue Guo & Haibo Kuang & Cong Sui & Lidong Wang, 2025. "On predicting ocean freight rates: a novel hybrid model of combined error evaluation and reinforcement learning," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 27(2), pages 350-372, June.
- Ioannis D. Vrontos & John Galakis & Ekaterini Panopoulou & Spyridon D. Vrontos, 2024. "Forecasting GDP growth: The economic impact of COVID‐19 pandemic," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1042-1086, July.
Printed from https://ideas.repec.org/r/eee/intfor/v33y2017i1p48-60.html