IDEAS home Printed from https://ideas.repec.org/r/eee/intfor/v31y2015i3p620-634.html

Forecasting realized volatility with changing average levels

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. G.M. Gallo & D. Lacava & E. Otranto, 2020. "On Classifying the Effects of Policy Announcements on Volatility," Working Paper CRENoS 202008, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
  2. Cipollini, Fabrizio & Gallo, Giampiero M. & Otranto, Edoardo, 2021. "Realized volatility forecasting: Robustness to measurement errors," International Journal of Forecasting, Elsevier, vol. 37(1), pages 44-57.
  3. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2016. "Copula--based Specification of vector MEMs," Papers 1604.01338, arXiv.org.
  4. Naimoli, Antonio & Storti, Giuseppe, 2019. "Heterogeneous component multiplicative error models for forecasting trading volumes," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1332-1355.
  5. Zhipeng, Yan & Shenghong, Li, 2018. "Hedge ratio on Markov regime-switching diagonal Bekk–Garch model," Finance Research Letters, Elsevier, vol. 24(C), pages 49-55.
  6. Tapia, Sebastian & Kristjanpoller, Werner, 2022. "Framework based on multiplicative error and residual analysis to forecast bitcoin intraday-volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
  7. Giampiero M. Gallo & Edoardo Otranto, 2018. "Combining sharp and smooth transitions in volatility dynamics: a fuzzy regime approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(3), pages 549-573, April.
  8. Liu, Guangqiang & Wang, Yan & Chen, Xiaodan & Zhang, Yifeng & Shang, Yue, 2020. "Forecasting volatility of the Chinese stock markets using TVP HAR-type models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
  9. Giampiero M. Gallo & Edoardo Otranto, 2016. "Combining Markov Switching and Smooth Transition in Modeling Volatility: A Fuzzy Regime MEM," Econometrics Working Papers Archive 2016_02, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  10. Thomas Chuffart, 2015. "Selection Criteria in Regime Switching Conditional Volatility Models," Econometrics, MDPI, vol. 3(2), pages 1-28, May.
  11. Arnaud Dufays & Jeroen V. K. Rombouts, 2019. "Sparse Change-point HAR Models for Realized Variance," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 857-880, September.
  12. AUGUSTYNIAK, Maciej & BAUWENS, Luc & DUFAYS, Arnaud, 2016. "A New Approach to Volatility Modeling : The High-Dimensional Markov Model," LIDAM Discussion Papers CORE 2016042, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  13. Cipollini, Fabrizio & Gallo, Giampiero M., 2025. "Multiplicative Error Models: 20 years on," Econometrics and Statistics, Elsevier, vol. 33(C), pages 209-229.
  14. Amendola, A. & Candila, V. & Cipollini, F. & Gallo, G.M., 2024. "Doubly multiplicative error models with long- and short-run components," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
  15. Luca Scaffidi Domianello & Giampiero M. Gallo & Edoardo Otranto, 2024. "Smooth and Abrupt Dynamics in Financial Volatility: The MS‐MEM‐MIDAS," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(1), pages 21-43, February.
  16. Yuan, Ying & Zhang, Tonghui, 2020. "Forecasting stock market in high and low volatility periods: a modified multifractal volatility approach," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  17. Cavicchioli, Maddalena, 2017. "Asymptotic Fisher information matrix of Markov switching VARMA models," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 124-135.
  18. Bauwens, Luc & Otranto, Edoardo, 2020. "Nonlinearities and regimes in conditional correlations with different dynamics," Journal of Econometrics, Elsevier, vol. 217(2), pages 496-522.
  19. Demetrio Lacava & Luca Scaffidi Domianello, 2021. "The Incidence of Spillover Effects during the Unconventional Monetary Policies Era," JRFM, MDPI, vol. 14(6), pages 1-18, May.
  20. Edoardo Otranto & Luca Scaffidi Domianello, 2025. "On using fuzzy clustering for detecting the number of states in Markov switching models," Annals of Operations Research, Springer, vol. 349(3), pages 1855-1890, June.
  21. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2017. "Copula–Based vMEM Specifications versus Alternatives: The Case of Trading Activity," Econometrics, MDPI, vol. 5(2), pages 1-24, April.
  22. Caporin, Massimiliano & Rossi, Eduardo & Santucci de Magistris, Paolo, 2017. "Chasing volatility," Journal of Econometrics, Elsevier, vol. 198(1), pages 122-145.
  23. Yongdeng Xu, 2025. "The exponential HEAVY model: an improved approach to volatility modeling and forecasting," Review of Quantitative Finance and Accounting, Springer, vol. 65(2), pages 727-748, August.
  24. Ma, Yong & Li, Shuaibing & Zhou, Mingtao, 2025. "Twitter-based market uncertainty and global stock volatility predictability," The North American Journal of Economics and Finance, Elsevier, vol. 75(PA).
  25. Ding, Yi & Kambouroudis, Dimos & McMillan, David G., 2025. "Forecasting realised volatility using regime-switching models," International Review of Economics & Finance, Elsevier, vol. 101(C).
  26. Maria Ghani & Feng Ma & Dengshi Huang, 2024. "Forecasting the Asian stock market volatility: Evidence from WTI and INE oil futures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 1496-1512, April.
  27. E. Otranto, 2015. "Adding Flexibility to Markov Switching Models," Working Paper CRENoS 201509, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
  28. Bartoš, Erik & Pinčák, Richard, 2017. "Identification of market trends with string and D2-brane maps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 57-70.
  29. Liu, Guangqiang & Wei, Yu & Chen, Yongfei & Yu, Jiang & Hu, Yang, 2018. "Forecasting the value-at-risk of Chinese stock market using the HARQ model and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 288-297.
  30. Richard D. F. Harris & Murat Mazibas, 2022. "A component Markov regime‐switching autoregressive conditional range model," Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 650-683, April.
  31. Lu, Botao & Ma, Feng & Wang, Jiqian & Ding, Hui & Wahab, M.I.M., 2021. "Harnessing the decomposed realized measures for volatility forecasting: Evidence from the US stock market," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 672-689.
  32. Wang, Jiqian & Huang, Yisu & Ma, Feng & Chevallier, Julien, 2020. "Does high-frequency crude oil futures data contain useful information for predicting volatility in the US stock market? New evidence," Energy Economics, Elsevier, vol. 91(C).
  33. Anastasios Megaritis & Alexandros Kontonikas & Nikolaos Vlastakis & Athanasios Triantafyllou, 2025. "The term structure of interest rates as predictor of stock market volatility," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 30(3), pages 3212-3229, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.