IDEAS home Printed from https://ideas.repec.org/r/eee/intfin/v65y2020ics1042443120300755.html
   My bibliography  Save this item

Signal-herding in cryptocurrencies

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Neto, David, 2022. "Revisiting spillovers between investor attention and cryptocurrency markets using noisy independent component analysis and transfer entropy," The Journal of Economic Asymmetries, Elsevier, vol. 26(C).
  2. Youssef, Mouna & Waked, Sami Sobhi, 2022. "Herding behavior in the cryptocurrency market during COVID-19 pandemic: The role of media coverage," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
  3. Rosy Dhall & Bhanwar Singh, 2020. "The COVID-19 Pandemic and Herding Behaviour: Evidence from India’s Stock Market," Millennial Asia, , vol. 11(3), pages 366-390, December.
  4. Cole, Benjamin M. & Dyhrberg, Anne H. & Foley, Sean & Svec, Jiri, 2022. "Can Bitcoin be Trusted? Quantifying the economic value of blockchain transactions," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
  5. Mohamad, Azhar & Stavroyiannis, Stavros, 2022. "Do birds of a feather flock together? Evidence from time-varying herding behaviour of bitcoin and foreign exchange majors during Covid-19," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
  6. Jinesh Jain & Nidhi Walia & Simarjeet Singh & Esha Jain, 2022. "Mapping the field of behavioural biases: a literature review using bibliometric analysis," Management Review Quarterly, Springer, vol. 72(3), pages 823-855, September.
  7. Tsionas, Mike G. & Philippas, Dionisis & Philippas, Nikolaos, 2022. "Multivariate stochastic volatility for herding detection: Evidence from the energy sector," Energy Economics, Elsevier, vol. 109(C).
  8. Neto, David, 2022. "Examining interconnectedness between media attention and cryptocurrency markets: A transfer entropy story," Economics Letters, Elsevier, vol. 214(C).
  9. Daekook Kang, 2021. "Box-office forecasting in Korea using search trend data: a modified generalized Bass diffusion model," Electronic Commerce Research, Springer, vol. 21(1), pages 41-72, March.
  10. Philippas, Dionisis & Dragomirescu-Gaina, Catalin & Goutte, Stéphane & Nguyen, Duc Khuong, 2021. "Investors’ attention and information losses under market stress," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 1112-1127.
  11. Yarovaya, Larisa & Matkovskyy, Roman & Jalan, Akanksha, 2021. "The effects of a “black swan” event (COVID-19) on herding behavior in cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
  12. Muhammad Anas & Syed Jawad Hussain Shahzad & Larisa Yarovaya, 2024. "The use of high-frequency data in cryptocurrency research: a meta-review of literature with bibliometric analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-31, December.
  13. Ukpong, Idibekeabasi & Tan, Handy & Yarovaya, Larisa, 2021. "Determinants of industry herding in the US stock market," Finance Research Letters, Elsevier, vol. 43(C).
  14. Jia, Boxiang & Shen, Dehua & Zhang, Wei, 2022. "Extreme sentiment and herding: Evidence from the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 63(C).
  15. Kayani, Umar & Ullah, Mirzat & Aysan, Ahmet Faruk & Nazir, Sidra & Frempong, Josephine, 2024. "Quantile connectedness among digital assets, traditional assets, and renewable energy prices during extreme economic crisis," Technological Forecasting and Social Change, Elsevier, vol. 208(C).
  16. Neto, David, 2021. "Are Google searches making the Bitcoin market run amok? A tail event analysis," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
  17. Imran Yousaf & Shoaib Ali & Elie Bouri & Anupam Dutta, 2021. "Herding on Fundamental/Nonfundamental Information During the COVID-19 Outbreak and Cyber-Attacks: Evidence From the Cryptocurrency Market," SAGE Open, , vol. 11(3), pages 21582440211, July.
  18. Mohamed Shaker Ahmed & Elie Bouri, 2023. "Long memory and structural breaks of cryptocurrencies trading volume," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 13(3), pages 469-497, December.
  19. Zhao, Yuan & Liu, Nan & Li, Wanpeng, 2022. "Industry herding in crypto assets," International Review of Financial Analysis, Elsevier, vol. 84(C).
  20. Iqbal, Najaf & Fareed, Zeeshan & Wan, Guangcai & Shahzad, Farrukh, 2021. "Asymmetric nexus between COVID-19 outbreak in the world and cryptocurrency market," International Review of Financial Analysis, Elsevier, vol. 73(C).
  21. Naeem, Muhammad Abubakr & Mbarki, Imen & Shahzad, Syed Jawad Hussain, 2021. "Predictive role of online investor sentiment for cryptocurrency market: Evidence from happiness and fears," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 496-514.
  22. Bikramaditya Ghosh & Spyros Papathanasiou & Dimitrios Kenourgios, 2022. "Cross-Country Linkages and Asymmetries of Sovereign Risk Pluralistic Investigation of CDS Spreads," Sustainability, MDPI, vol. 14(21), pages 1-10, October.
  23. N. Blasco & P. Corredor & N. Satrústegui, 2022. "The witching week of herding on bitcoin exchanges," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-18, December.
  24. Umar, Muhammad & Su, Chi-Wei & Rizvi, Syed Kumail Abbas & Shao, Xue-Feng, 2021. "Bitcoin: A safe haven asset and a winner amid political and economic uncertainties in the US?," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
  25. Nikolaos A. Kyriazis, 2021. "Investigating the diversifying or hedging nexus of cannabis cryptocurrencies with major digital currencies," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 845-861, December.
  26. Sakemoto, Ryuta, 2021. "Economic Evaluation of Cryptocurrency Investment," MPRA Paper 108283, University Library of Munich, Germany.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.