IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v47y2012i1p430-442.html
   My bibliography  Save this item

Projections of energy services demand for residential buildings: Insights from a bottom-up methodology

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lü, Xiaoshu & Lu, Tao & Kibert, Charles J. & Viljanen, Martti, 2015. "Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach," Applied Energy, Elsevier, vol. 144(C), pages 261-275.
  2. Claudia Kettner & Daniela Kletzan-Slamanig & Angela Köppl, 2015. "Indicators for Sustainable Energy Development for Austria (ISED-AT). Residential Buildings and Electricity and Heat Supply," WIFO Working Papers 495, WIFO.
  3. Djula Borozan & Mirjana Radman Funaric, 2018. "The Impact of Disaggregated Social Capital on Household Electricity Intensity," South-Eastern Europe Journal of Economics, Association of Economic Universities of South and Eastern Europe and the Black Sea Region, vol. 16(2), pages 189-207.
  4. Dirks, James A. & Gorrissen, Willy J. & Hathaway, John H. & Skorski, Daniel C. & Scott, Michael J. & Pulsipher, Trenton C. & Huang, Maoyi & Liu, Ying & Rice, Jennie S., 2015. "Impacts of climate change on energy consumption and peak demand in buildings: A detailed regional approach," Energy, Elsevier, vol. 79(C), pages 20-32.
  5. Raúl Castaño-Rosa & Roberto Barrella & Carmen Sánchez-Guevara & Ricardo Barbosa & Ioanna Kyprianou & Eleftheria Paschalidou & Nikolaos S. Thomaidis & Dusana Dokupilova & João Pedro Gouveia & József Ká, 2021. "Cooling Degree Models and Future Energy Demand in the Residential Sector. A Seven-Country Case Study," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
  6. Bruni, G. & Cordiner, S. & Mulone, V., 2014. "Domestic distributed power generation: Effect of sizing and energy management strategy on the environmental efficiency of a photovoltaic-battery-fuel cell system," Energy, Elsevier, vol. 77(C), pages 133-143.
  7. Yujiro Hirano & Tomohiko Ihara & Masayuki Hara & Keita Honjo, 2020. "Estimation of Direct and Indirect Household CO 2 Emissions in 49 Japanese Cities with Consideration of Regional Conditions," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
  8. Comodi, Gabriele & Cioccolanti, Luca & Renzi, Massimiliano, 2014. "Modelling the Italian household sector at the municipal scale: Micro-CHP, renewables and energy efficiency," Energy, Elsevier, vol. 68(C), pages 92-103.
  9. Vögele, Stefan & Hansen, Patrick & Poganietz, Witold-Roger & Prehofer, Sigrid & Weimer-Jehle, Wolfgang, 2017. "Building scenarios for energy consumption of private households in Germany using a multi-level cross-impact balance approach," Energy, Elsevier, vol. 120(C), pages 937-946.
  10. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
  11. Claudia Kettner & Daniela Kletzan-Slamanig & Angela Köppl, 2015. "Assessing Energy Scenarios for Austria with the ISED-AT Framework," WIFO Working Papers 496, WIFO.
  12. Rosenberg, Eva, 2014. "Calculation method for electricity end-use for residential lighting," Energy, Elsevier, vol. 66(C), pages 295-304.
  13. Hong, Lixuan & Zhou, Nan & Feng, Wei & Khanna, Nina & Fridley, David & Zhao, Yongqiang & Sandholt, Kaare, 2016. "Building stock dynamics and its impacts on materials and energy demand in China," Energy Policy, Elsevier, vol. 94(C), pages 47-55.
  14. Gouveia, João Pedro & Seixas, Júlia & Mestre, Ana, 2017. "Daily electricity consumption profiles from smart meters - Proxies of behavior for space heating and cooling," Energy, Elsevier, vol. 141(C), pages 108-122.
  15. Stuart, Elizabeth & Larsen, Peter H. & Goldman, Charles A. & Gilligan, Donald, 2014. "A method to estimate the size and remaining market potential of the U.S. ESCO (energy service company) industry," Energy, Elsevier, vol. 77(C), pages 362-371.
  16. Besagni, Giorgio & Borgarello, Marco & Premoli Vilà, Lidia & Najafi, Behzad & Rinaldi, Fabio, 2020. "MOIRAE – bottom-up MOdel to compute the energy consumption of the Italian REsidential sector: Model design, validation and evaluation of electrification pathways," Energy, Elsevier, vol. 211(C).
  17. Weimer-Jehle, Wolfgang & Buchgeister, Jens & Hauser, Wolfgang & Kosow, Hannah & Naegler, Tobias & Poganietz, Witold-Roger & Pregger, Thomas & Prehofer, Sigrid & von Recklinghausen, Andreas & Schippl, , 2016. "Context scenarios and their usage for the construction of socio-technical energy scenarios," Energy, Elsevier, vol. 111(C), pages 956-970.
  18. Malla, Sunil, 2022. "An outlook of end-use energy demand based on a clean energy and technology transformation of the household sector in Nepal," Energy, Elsevier, vol. 238(PB).
  19. Alireza Karimi & You Joung Kim & Negar Mohammad Zadeh & Antonio García-Martínez & Shahram Delfani & Robert D. Brown & David Moreno-Rangel & Pir Mohammad, 2022. "Assessment of Outdoor Design Conditions on the Energy Performance of Cooling Systems in Future Climate Scenarios—A Case Study over Three Cities of Texas, Unites States," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
  20. Andreas Andreou & Panagiotis Fragkos & Theofano Fotiou & Faidra Filippidou, 2022. "Assessing Lifestyle Transformations and Their Systemic Effects in Energy-System and Integrated Assessment Models: A Review of Current Methods and Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
  21. Ó Broin, Eoin & Mata, Érika & Göransson, Anders & Johnsson, Filip, 2013. "The effect of improved efficiency on energy savings in EU-27 buildings," Energy, Elsevier, vol. 57(C), pages 134-148.
  22. Rosenberg, Eva & Lind, Arne & Espegren, Kari Aamodt, 2013. "The impact of future energy demand on renewable energy production – Case of Norway," Energy, Elsevier, vol. 61(C), pages 419-431.
  23. Bartolucci, Lorenzo & Cordiner, Stefano & Mulone, Vincenzo & Rocco, Vittorio & Rossi, Joao Luis, 2018. "Hybrid renewable energy systems for renewable integration in microgrids: Influence of sizing on performance," Energy, Elsevier, vol. 152(C), pages 744-758.
  24. Fortes, Patrícia & Alvarenga, António & Seixas, Júlia & Rodrigues, Sofia, 2015. "Long-term energy scenarios: Bridging the gap between socio-economic storylines and energy modeling," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 161-178.
  25. Amorim, Filipa & Pina, André & Gerbelová, Hana & Pereira da Silva, Patrícia & Vasconcelos, Jorge & Martins, Victor, 2014. "Electricity decarbonisation pathways for 2050 in Portugal: A TIMES (The Integrated MARKAL-EFOM System) based approach in closed versus open systems modelling," Energy, Elsevier, vol. 69(C), pages 104-112.
  26. Chung, Mo & Park, Hwa-Choon, 2015. "Comparison of building energy demand for hotels, hospitals, and offices in Korea," Energy, Elsevier, vol. 92(P3), pages 383-393.
  27. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.
  28. Fortes, Patrícia & Simoes, Sofia G. & Gouveia, João Pedro & Seixas, Júlia, 2019. "Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal," Applied Energy, Elsevier, vol. 237(C), pages 292-303.
  29. Dioha, Michael O. & Kumar, Atul, 2020. "Exploring sustainable energy transitions in sub-Saharan Africa residential sector: The case of Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
  30. Claudia Kettner & Angela Köppl & Sigrid Stagl, 2014. "Towards an Operational Measurement of Socio-ecological Performance. WWWforEurope Working Paper No. 52," WIFO Studies, WIFO, number 47154, April.
  31. Pukšec, Tomislav & Mathiesen, Brian Vad & Novosel, Tomislav & Duić, Neven, 2014. "Assessing the impact of energy saving measures on the future energy demand and related GHG (greenhouse gas) emission reduction of Croatia," Energy, Elsevier, vol. 76(C), pages 198-209.
  32. Chi, Fang'ai & Xu, Liming & Pan, Jiajie & Wang, Ruonan & Tao, Yekang & Guo, Yuang & Peng, Changhai, 2020. "Prediction of the total day-round thermal load for residential buildings at various scales based on weather forecast data," Applied Energy, Elsevier, vol. 280(C).
  33. Di Leo, Senatro & Caramuta, Pietro & Curci, Paola & Cosmi, Carmelina, 2020. "Regression analysis for energy demand projection: An application to TIMES-Basilicata and TIMES-Italy energy models," Energy, Elsevier, vol. 196(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.