IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v36y2011i8p5385-5393.html
   My bibliography  Save this item

Performance, emission and combustion characteristics of biodiesel fuelled variable compression ratio engine

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.
  2. Rosha, Pali & Mohapatra, Saroj Kumar & Mahla, Sunil Kumar & Cho, HaengMuk & Chauhan, Bhupendra Singh & Dhir, Amit, 2019. "Effect of compression ratio on combustion, performance, and emission characteristics of compression ignition engine fueled with palm (B20) biodiesel blend," Energy, Elsevier, vol. 178(C), pages 676-684.
  3. E, Jiaqiang & Pham, MinhHieu & Deng, Yuanwang & Nguyen, Tuannghia & Duy, VinhNguyen & Le, DucHieu & Zuo, Wei & Peng, Qingguo & Zhang, Zhiqing, 2018. "Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends," Energy, Elsevier, vol. 149(C), pages 979-989.
  4. Agarwal, Avinash Kumar & Shrivastava, Abhay & Prasad, Rajesh Kumar, 2016. "Evaluation of toxic potential of particulates emitted from Jatropha biodiesel fuelled engine," Renewable Energy, Elsevier, vol. 99(C), pages 564-572.
  5. Pyl, Steven P. & Van Geem, Kevin M. & Puimège, Philip & Sabbe, Maarten K. & Reyniers, Marie-Françoise & Marin, Guy B., 2012. "A comprehensive study of methyl decanoate pyrolysis," Energy, Elsevier, vol. 43(1), pages 146-160.
  6. Arumugam, S. & Sriram, G. & Ellappan, R., 2014. "Bio-lubricant-biodiesel combination of rapeseed oil: An experimental investigation on engine oil tribology, performance, and emissions of variable compression engine," Energy, Elsevier, vol. 72(C), pages 618-627.
  7. Yang, Po-Ming & Lin, Yuan-Chung & Lin, Kuang C. & Jhang, Syu-Ruei & Chen, Shang-Cyuan & Wang, Chia-Chi & Lin, Ying-Chi, 2015. "Comparison of carbonyl compound emissions from a diesel engine generator fueled with blends of n-butanol, biodiesel and diesel," Energy, Elsevier, vol. 90(P1), pages 266-273.
  8. Chen, Guisheng & Shen, Yinggang & Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng, 2013. "Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran–diesel, n-butanol–diesel and gasoline–diesel blends," Energy, Elsevier, vol. 54(C), pages 333-342.
  9. S, Prabakaran & T, Mohanraj & A, Arumugam, 2021. "Azolla pinnata methyl ester production and process optimization using a novel heterogeneous catalyst," Renewable Energy, Elsevier, vol. 180(C), pages 353-371.
  10. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
  11. Wei, L. & Cheung, C.S. & Ning, Z., 2017. "Influence of waste cooking oil biodiesel on combustion, unregulated gaseous emissions and particulate emissions of a direct-injection diesel engine," Energy, Elsevier, vol. 127(C), pages 175-185.
  12. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
  13. Jaichandar, S. & Thamaraikannan, M. & Yogaraj, D. & Samuelraj, D., 2019. "A comprehensive study on the effects of internal air jet piston on the performance of a JOME fueled DI diesel engine," Energy, Elsevier, vol. 185(C), pages 1174-1182.
  14. Othman, Mohd Fahmi & Adam, Abdullah & Najafi, G. & Mamat, Rizalman, 2017. "Green fuel as alternative fuel for diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 694-709.
  15. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E., 2013. "Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective," Energy, Elsevier, vol. 55(C), pages 879-887.
  16. Duan, Xiongbo & Li, Yangyang & Liu, Jingping & Guo, Genmiao & Fu, Jianqin & Zhang, Quanchang & Zhang, Shiheng & Liu, Weiqiang, 2019. "Experimental study the effects of various compression ratios and spark timing on performance and emission of a lean-burn heavy-duty spark ignition engine fueled with methane gas and hydrogen blends," Energy, Elsevier, vol. 169(C), pages 558-571.
  17. Ibrahim Khalil Adam & Abdul Rashid Abdul Aziz & Morgan R. Heikal & Suzana Yusup & Firmansyah & Ahmad Shahrul Ahmad & Ezrann Zharif Zainal Abidin, 2018. "Performance and Emission Analysis of Rubber Seed, Palm, and Their Combined Blend in a Multi-Cylinder Diesel Engine," Energies, MDPI, vol. 11(6), pages 1-20, June.
  18. Ghorbani, Afshin & Bazooyar, Bahamin, 2012. "Optimization of the combustion of SOME (soybean oil methyl ester), B5, B10, B20 and petrodiesel in a semi industrial boiler," Energy, Elsevier, vol. 44(1), pages 217-227.
  19. Hasan, M.M. & Rahman, M.M., 2017. "Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 938-948.
  20. Gad, M.S. & Abu-Elyazeed, O.S. & Mohamed, M.A. & Hashim, A.M., 2021. "Effect of oil blends derived from catalytic pyrolysis of waste cooking oil on diesel engine performance, emissions and combustion characteristics," Energy, Elsevier, vol. 223(C).
  21. Broatch, A. & Tormos, B. & Olmeda, P. & Novella, R., 2014. "Impact of biodiesel fuel on cold starting of automotive direct injection diesel engines," Energy, Elsevier, vol. 73(C), pages 653-660.
  22. Oumer, A.N. & Hasan, M.M. & Baheta, Aklilu Tesfamichael & Mamat, Rizalman & Abdullah, A.A., 2018. "Bio-based liquid fuels as a source of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 82-98.
  23. Hawi, Meshack & Elwardany, Ahmed & Ookawara, Shinichi & Ahmed, Mahmoud, 2019. "Effect of compression ratio on performance, combustion and emissions characteristics of compression ignition engine fueled with jojoba methyl ester," Renewable Energy, Elsevier, vol. 141(C), pages 632-645.
  24. Ong, Hwai Chyuan & Masjuki, H.H. & Mahlia, T.M.I. & Silitonga, A.S. & Chong, W.T. & Yusaf, Talal, 2014. "Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine," Energy, Elsevier, vol. 69(C), pages 427-445.
  25. Gautam, Raghvendra & Chauhan, Bhupendra Singh & Chang Lim, Hee, 2022. "Influence of variation of injection angle on the combustion, performance and emissions characteristics of Jatropha Ethyl Ester," Energy, Elsevier, vol. 254(PC).
  26. Patel, Paresh D. & Lakdawala, Absar & Chourasia, Sajan & Patel, Rajesh N., 2016. "Bio fuels for compression ignition engine: A review on engine performance, emission and life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 24-43.
  27. Jaichandar, S. & Senthil Kumar, P. & Annamalai, K., 2012. "Combined effect of injection timing and combustion chamber geometry on the performance of a biodiesel fueled diesel engine," Energy, Elsevier, vol. 47(1), pages 388-394.
  28. Barik, Debabrata & Murugan, S., 2014. "Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode," Energy, Elsevier, vol. 72(C), pages 760-771.
  29. Abedin, M.J. & Kalam, M.A. & Masjuki, H.H. & Sabri, M.F.M. & Rahman, S.M. Ashrafur & Sanjid, A. & Fattah, I.M. Rizwanul, 2016. "Production of biodiesel from a non-edible source and study of its combustion, and emission characteristics: A comparative study with B5," Renewable Energy, Elsevier, vol. 88(C), pages 20-29.
  30. Hoang, Anh Tuan & Tabatabaei, Meisam & Aghbashlo, Mortaza & Carlucci, Antonio Paolo & Ölçer, Aykut I. & Le, Anh Tuan & Ghassemi, Abbas, 2021. "Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  31. Jaichandar, S. & Annamalai, K., 2012. "Influences of re-entrant combustion chamber geometry on the performance of Pongamia biodiesel in a DI diesel engine," Energy, Elsevier, vol. 44(1), pages 633-640.
  32. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
  33. Chattopadhyay, Soham & Sen, Ramkrishna, 2013. "Fuel properties, engine performance and environmental benefits of biodiesel produced by a green process," Applied Energy, Elsevier, vol. 105(C), pages 319-326.
  34. Sharma, Abhishek & Murugan, S., 2017. "Effect of nozzle opening pressure on the behaviour of a diesel engine running with non-petroleum fuel," Energy, Elsevier, vol. 127(C), pages 236-246.
  35. Grana, Roberto & Frassoldati, Alessio & Cuoci, Alberto & Faravelli, Tiziano & Ranzi, Eliseo, 2012. "A wide range kinetic modeling study of pyrolysis and oxidation of methyl butanoate and methyl decanoate. Note I: Lumped kinetic model of methyl butanoate and small methyl esters," Energy, Elsevier, vol. 43(1), pages 124-139.
  36. Tesfa, B. & Mishra, R. & Zhang, C. & Gu, F. & Ball, A.D., 2013. "Combustion and performance characteristics of CI (compression ignition) engine running with biodiesel," Energy, Elsevier, vol. 51(C), pages 101-115.
  37. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Abedin, M.J., 2014. "Assessment of emission and performance of compression ignition engine with varying injection timing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 221-230.
  38. Mohamed Mohamed & Chee-Keong Tan & Ali Fouda & Mohammed Saber Gad & Osayed Abu-Elyazeed & Abdel-Fatah Hashem, 2020. "Diesel Engine Performance, Emissions and Combustion Characteristics of Biodiesel and Its Blends Derived from Catalytic Pyrolysis of Waste Cooking Oil," Energies, MDPI, vol. 13(21), pages 1-13, October.
  39. Muruganantham Ponnusamy & Bharathwaaj Ramani & Ravishankar Sathyamruthy, 2021. "A Parametric Study on a Diesel Engine Fuelled Using Waste Cooking Oil Blended with Al 2 O 3 Nanoparticle—Performance, Emission, and Combustion Characteristics," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
  40. Zheng, Zunqing & Wang, XiaoFeng & Zhong, Xiaofan & Hu, Bin & Liu, Haifeng & Yao, Mingfa, 2016. "Experimental study on the combustion and emissions fueling biodiesel/n-butanol, biodiesel/ethanol and biodiesel/2,5-dimethylfuran on a diesel engine," Energy, Elsevier, vol. 115(P1), pages 539-549.
  41. Gonca, Guven & Dobrucali, Erinc, 2016. "Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends," Renewable Energy, Elsevier, vol. 93(C), pages 658-666.
  42. Zhen, Xudong & Wang, Yang, 2015. "Numerical analysis on original emissions for a spark ignition methanol engine based on detailed chemical kinetics," Renewable Energy, Elsevier, vol. 81(C), pages 43-51.
  43. Jaichandar, S. & Annamalai, K., 2013. "Combined impact of injection pressure and combustion chamber geometry on the performance of a biodiesel fueled diesel engine," Energy, Elsevier, vol. 55(C), pages 330-339.
  44. Zheng, Zunqing & Xia, Mingtao & Liu, Haifeng & Wang, Xiaofeng & Yao, Mingfa, 2018. "Experimental study on combustion and emissions of dual fuel RCCI mode fueled with biodiesel/n-butanol, biodiesel/2,5-dimethylfuran and biodiesel/ethanol," Energy, Elsevier, vol. 148(C), pages 824-838.
  45. Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
  46. Mishra, Purna Chandra & Nayak, Swarup Kumar, 2018. "Pre-and post-mixed hybrid biodiesel blends as alternative energy fuels-an experimental case study on turbo-charged direct injection diesel engine," Energy, Elsevier, vol. 160(C), pages 910-923.
  47. D´Agosto, Márcio de Almeida & da Silva, Marcelino Aurélio Vieira & Franca, Luíza Santana & de Oliveira, Cíntia Machado & Alexandre, Manuel Oliveira Lemos & da Costa Marques, Luiz Guilherme & Murta, Au, 2017. "Comparative study of emissions from stationary engines using biodiesel made from soybean oil, palm oil and waste frying oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1376-1392.
  48. Xue, Jinlin, 2013. "Combustion characteristics, engine performances and emissions of waste edible oil biodiesel in diesel engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 350-365.
  49. Kurji, H. & Valera-Medina, A. & Runyon, J. & Giles, A. & Pugh, D. & Marsh, R. & Cerone, N. & Zimbardi, F. & Valerio, V., 2016. "Combustion characteristics of biodiesel saturated with pyrolysis oil for power generation in gas turbines," Renewable Energy, Elsevier, vol. 99(C), pages 443-451.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.