IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v35y2010i8p3284-3300.html
   My bibliography  Save this item

Warm season cooling requirements for passive buildings in Southeastern Europe (Romania)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gilani, Syed Ihtsham ul Haq & Aris, Mohd Shiraz & Bhaskoro, Petrus Tri, 2014. "Energy saving technique for cooling dominated academic building: Techno-economic analysis of its application," Applied Energy, Elsevier, vol. 132(C), pages 192-199.
  2. Xing Li & Qinli Deng & Zhigang Ren & Xiaofang Shan & Guang Yang, 2021. "Parametric Study on Residential Passive House Building in Different Chinese Climate Zones," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
  3. Feng, Wei & Zhang, Qianning & Ji, Hui & Wang, Ran & Zhou, Nan & Ye, Qing & Hao, Bin & Li, Yutong & Luo, Duo & Lau, Stephen Siu Yu, 2019. "A review of net zero energy buildings in hot and humid climates: Experience learned from 34 case study buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  4. Dalbem, Renata & Grala da Cunha, Eduardo & Vicente, Romeu & Figueiredo, Antonio & Oliveira, Rui & Silva, Antonio César Silveira Baptista da, 2019. "Optimisation of a social housing for south of Brazil: From basic performance standard to passive house concept," Energy, Elsevier, vol. 167(C), pages 1278-1296.
  5. Joanna Ferdyn-Grygierek & Krzysztof Grygierek & Anna Gumińska & Piotr Krawiec & Adrianna Oćwieja & Robert Poloczek & Julia Szkarłat & Aleksandra Zawartka & Daria Zobczyńska & Daria Żukowska-Tejsen, 2021. "Passive Cooling Solutions to Improve Thermal Comfort in Polish Dwellings," Energies, MDPI, vol. 14(12), pages 1-15, June.
  6. Shilei Lu & Ran Wang & Shaoqun Zheng, 2017. "Passive Optimization Design Based on Particle Swarm Optimization in Rural Buildings of the Hot Summer and Warm Winter Zone of China," Sustainability, MDPI, vol. 9(12), pages 1-30, December.
  7. Ayikoe Tettey, Uniben Yao & Gustavsson, Leif, 2020. "Energy savings and overheating risk of deep energy renovation of a multi-storey residential building in a cold climate under climate change," Energy, Elsevier, vol. 202(C).
  8. Fabrizio Ascione & Nicola Bianco & Rosa Francesca De Masi & Gerardo Maria Mauro & Giuseppe Peter Vanoli, 2015. "Design of the Building Envelope: A Novel Multi-Objective Approach for the Optimization of Energy Performance and Thermal Comfort," Sustainability, MDPI, vol. 7(8), pages 1-28, August.
  9. Okochi, Godwine Swere & Yao, Ye, 2016. "A review of recent developments and technological advancements of variable-air-volume (VAV) air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 784-817.
  10. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
  11. Kılıc, Deniz & Yagci, Ceren & Iscan, Fatih, 2023. "A GIS-based multi-criteria decision analysis approach using AHP for rural settlement site selection and eco-village design in Erzincan, Turkey," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
  12. Chen, Xi & Yang, Hongxing & Wang, Yuanhao, 2017. "Parametric study of passive design strategies for high-rise residential buildings in hot and humid climates: miscellaneous impact factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 442-460.
  13. Pop, Octavian G. & Fechete Tutunaru, Lucian & Bode, Florin & Abrudan, Ancuţa C. & Balan, Mugur C., 2018. "Energy efficiency of PCM integrated in fresh air cooling systems in different climatic conditions," Applied Energy, Elsevier, vol. 212(C), pages 976-996.
  14. Kočí, Václav & Kočí, Jan & Maděra, Jiří & Černý, Robert, 2016. "Contribution of waste products in single-layer ceramic building envelopes to overall energy savings," Energy, Elsevier, vol. 111(C), pages 947-955.
  15. Premrov, Miroslav & Žigart, Maja & Žegarac Leskovar, Vesna, 2018. "Influence of the building shape on the energy performance of timber-glass buildings located in warm climatic regions," Energy, Elsevier, vol. 149(C), pages 496-504.
  16. Badescu, Viorel & Laaser, Nadine & Crutescu, Ruxandra & Crutescu, Marin & Dobrovicescu, Alexandru & Tsatsaronis, George, 2011. "Modeling, validation and time-dependent simulation of the first large passive building in Romania," Renewable Energy, Elsevier, vol. 36(1), pages 142-157.
  17. Chung, Mo & Park, Hwa-Choon, 2015. "Comparison of building energy demand for hotels, hospitals, and offices in Korea," Energy, Elsevier, vol. 92(P3), pages 383-393.
  18. Gupta, A. & Anand, Y. & Tyagi, S.K. & Anand, S., 2016. "Economic and thermodynamic study of different cooling options: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 164-194.
  19. Chen, Xi & Yang, Hongxing & Zhang, Weilong, 2015. "A comprehensive sensitivity study of major passive design parameters for the public rental housing development in Hong Kong," Energy, Elsevier, vol. 93(P2), pages 1804-1818.
  20. Arabkoohsar, A. & Andresen, G.B., 2018. "A smart combination of a solar assisted absorption chiller and a power productive gas expansion unit for cogeneration of power and cooling," Renewable Energy, Elsevier, vol. 115(C), pages 489-500.
  21. Chiu, Justin N.W. & Gravoille, Pauline & Martin, Viktoria, 2013. "Active free cooling optimization with thermal energy storage in Stockholm," Applied Energy, Elsevier, vol. 109(C), pages 523-529.
  22. Ascione, Fabrizio & Böttcher, Olaf & Kaltenbrunner, Robert & Vanoli, Giuseppe Peter, 2017. "Methodology of the cost-optimality for improving the indoor thermal environment during the warm season. Presentation of the method and application to a new multi-storey building in Berlin," Applied Energy, Elsevier, vol. 185(P2), pages 1529-1541.
  23. Tettey, Uniben Yao Ayikoe & Dodoo, Ambrose & Gustavsson, Leif, 2017. "Energy use implications of different design strategies for multi-storey residential buildings under future climates," Energy, Elsevier, vol. 138(C), pages 846-860.
  24. Zhao, Zeming & Li, Hangxin & Wang, Shengwei, 2022. "Identification of the key design parameters of Zero/low energy buildings and the impacts of climate and building morphology," Applied Energy, Elsevier, vol. 328(C).
  25. Muresan, Adina Ana & Attia, Shady, 2017. "Energy efficiency in the Romanian residential building stock: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 349-363.
  26. Ancuta C. Abrudan & Octavian G. Pop & Alexandru Serban & Mugur C. Balan, 2019. "New Perspective on Performances and Limits of Solar Fresh Air Cooling in Different Climatic Conditions," Energies, MDPI, vol. 12(11), pages 1-22, June.
  27. Tettey, Uniben Yao Ayikoe & Dodoo, Ambrose & Gustavsson, Leif, 2016. "Primary energy implications of different design strategies for an apartment building," Energy, Elsevier, vol. 104(C), pages 132-148.
  28. Yıldız, Yusuf & Arsan, Zeynep Durmuş, 2011. "Identification of the building parameters that influence heating and cooling energy loads for apartment buildings in hot-humid climates," Energy, Elsevier, vol. 36(7), pages 4287-4296.
  29. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.