IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v177y2007i2p1153-1166.html
   My bibliography  Save this item

The new Fundamental Tree Algorithm for production scheduling of open pit mines

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. W. Lambert & A. Newman, 2014. "Tailored Lagrangian Relaxation for the open pit block sequencing problem," Annals of Operations Research, Springer, vol. 222(1), pages 419-438, November.
  2. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Cornillier, Fabien, 2020. "A new hybrid heuristic algorithm for the Precedence Constrained Production Scheduling Problem: A mining application," Omega, Elsevier, vol. 94(C).
  3. Rafael Epstein & Marcel Goic & Andrés Weintraub & Jaime Catalán & Pablo Santibáñez & Rodolfo Urrutia & Raúl Cancino & Sergio Gaete & Augusto Aguayo & Felipe Caro, 2012. "Optimizing Long-Term Production Plans in Underground and Open-Pit Copper Mines," Operations Research, INFORMS, vol. 60(1), pages 4-17, February.
  4. Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Alexandra Newman, 2013. "MineLib: a library of open pit mining problems," Annals of Operations Research, Springer, vol. 206(1), pages 93-114, July.
  5. Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Nguyen-Thoi, Trung & Bui, Thu-Thuy & Nguyen, Nga & Vu, Diep-Anh & Mahesh, Vinyas & Moayedi, Hossein, 2020. "Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm," Resources Policy, Elsevier, vol. 66(C).
  6. Del Castillo, Maria Fernanda & Dimitrakopoulos, Roussos, 2016. "A multivariate destination policy for geometallurgical variables in mineral value chains using coalition-formation clustering," Resources Policy, Elsevier, vol. 50(C), pages 322-332.
  7. Burdett, R.L. & Kozan, E., 2014. "An integrated approach for earthwork allocation, sequencing and routing," European Journal of Operational Research, Elsevier, vol. 238(3), pages 741-759.
  8. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2017. "A local branching heuristic for the open pit mine production scheduling problem," European Journal of Operational Research, Elsevier, vol. 257(1), pages 261-271.
  9. Rimélé, Adrien & Dimitrakopoulos, Roussos & Gamache, Michel, 2020. "A dynamic stochastic programming approach for open-pit mine planning with geological and commodity price uncertainty," Resources Policy, Elsevier, vol. 65(C).
  10. Alexandra M. Newman & Enrique Rubio & Rodrigo Caro & Andrés Weintraub & Kelly Eurek, 2010. "A Review of Operations Research in Mine Planning," Interfaces, INFORMS, vol. 40(3), pages 222-245, June.
  11. Moreno, Eduardo & Rezakhah, Mojtaba & Newman, Alexandra & Ferreira, Felipe, 2017. "Linear models for stockpiling in open-pit mine production scheduling problems," European Journal of Operational Research, Elsevier, vol. 260(1), pages 212-221.
  12. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
  13. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
  14. Devendra Joshi & Marwan Ali Albahar & Premkumar Chithaluru & Aman Singh & Arvind Yadav & Yini Miro, 2022. "A Novel Approach to Integrating Uncertainty into a Push Re-Label Network Flow Algorithm for Pit Optimization," Mathematics, MDPI, vol. 10(24), pages 1-20, December.
  15. O’Sullivan, Dónal & Newman, Alexandra, 2015. "Optimization-based heuristics for underground mine scheduling," European Journal of Operational Research, Elsevier, vol. 241(1), pages 248-259.
  16. Thomas W. M. Vossen & R. Kevin Wood & Alexandra M. Newman, 2016. "Hierarchical Benders Decomposition for Open-Pit Mine Block Sequencing," Operations Research, INFORMS, vol. 64(4), pages 771-793, August.
  17. Topal, Erkan & Ramazan, Salih, 2010. "A new MIP model for mine equipment scheduling by minimizing maintenance cost," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1065-1071, December.
  18. Chung, Joyce & Asad, Mohammad Waqar Ali & Topal, Erkan, 2022. "Timing of transition from open-pit to underground mining: A simultaneous optimisation model for open-pit and underground mine production schedules," Resources Policy, Elsevier, vol. 77(C).
  19. Michelle L. Blom & Adrian R. Pearce & Peter J. Stuckey, 2016. "A Decomposition-Based Algorithm for the Scheduling of Open-Pit Networks Over Multiple Time Periods," Management Science, INFORMS, vol. 62(10), pages 3059-3084, October.
  20. Lamghari, Amina & Dimitrakopoulos, Roussos, 2012. "A diversified Tabu search approach for the open-pit mine production scheduling problem with metal uncertainty," European Journal of Operational Research, Elsevier, vol. 222(3), pages 642-652.
  21. King, Barry & Goycoolea, Marcos & Newman, A., 2017. "Optimizing the open pit-to-underground mining transition," European Journal of Operational Research, Elsevier, vol. 257(1), pages 297-309.
  22. Bisera Andrić Gušavac & Selman Karagoz & Milena Popović & Dragan Pamućar & Muhammet Deveci, 2023. "Reconcilement of conflicting goals: a novel operations research-based methodology for environmental management," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7423-7460, August.
  23. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2017. "A methodology for the large-scale multi-period precedence-constrained knapsack problem: an application in the mining industry," International Journal of Production Economics, Elsevier, vol. 193(C), pages 12-20.
  24. Chatterjee, Snehamoy & Sethi, Manas Ranjan & Asad, Mohammad Waqar Ali, 2016. "Production phase and ultimate pit limit design under commodity price uncertainty," European Journal of Operational Research, Elsevier, vol. 248(2), pages 658-667.
  25. Shishvan, Masoud Soleymani & Sattarvand, Javad, 2015. "Long term production planning of open pit mines by ant colony optimization," European Journal of Operational Research, Elsevier, vol. 240(3), pages 825-836.
  26. Devendra Joshi & Premkumar Chithaluru & Aman Singh & Arvind Yadav & Dalia H. Elkamchouchi & Jose Breñosa & Divya Anand, 2022. "An Optimized Open Pit Mine Application for Limestone Quarry Production Scheduling to Maximize Net Present Value," Mathematics, MDPI, vol. 10(21), pages 1-22, November.
  27. Lamghari, Amina & Dimitrakopoulos, Roussos, 2016. "Network-flow based algorithms for scheduling production in multi-processor open-pit mines accounting for metal uncertainty," European Journal of Operational Research, Elsevier, vol. 250(1), pages 273-290.
  28. Mai, Ngoc Luan & Topal, Erkan & Erten, Oktay & Sommerville, Bruce, 2019. "A new risk-based optimisation method for the iron ore production scheduling using stochastic integer programming," Resources Policy, Elsevier, vol. 62(C), pages 571-579.
  29. Gilani, Seyyed-Omid & Sattarvand, Javad & Hajihassani, Mohsen & Abdullah, Shahrum Shah, 2020. "A stochastic particle swarm based model for long term production planning of open pit mines considering the geological uncertainty," Resources Policy, Elsevier, vol. 68(C).
  30. Zhang, Jian & Nault, Barrie R. & Dimitrakopoulos, Roussos G., 2019. "Optimizing a mineral value chain with market uncertainty using benders decomposition," European Journal of Operational Research, Elsevier, vol. 274(1), pages 227-239.
  31. W. Brian Lambert & Andrea Brickey & Alexandra M. Newman & Kelly Eurek, 2014. "Open-Pit Block-Sequencing Formulations: A Tutorial," Interfaces, INFORMS, vol. 44(2), pages 127-142, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.