IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v62y2019icp571-579.html
   My bibliography  Save this article

A new risk-based optimisation method for the iron ore production scheduling using stochastic integer programming

Author

Listed:
  • Mai, Ngoc Luan
  • Topal, Erkan
  • Erten, Oktay
  • Sommerville, Bruce

Abstract

Stochastic integer programming (SIP) has recently been studied to manage the risk caused by geological uncertainty when solving mine planning and production scheduling problems of open pit mines. However, similar to other mathematical programming techniques that deploy integer variables, the main obstacle of applying SIP on real-life datasets stems from the enormous number of integer variables required by its mathematical formulation, which is a function of number of mining blocks being processed and lifespan of the mining project. In this paper, a new framework is proposed for stochastic mine planning process which makes the application of SIP on large-scale datasets tractable. Firstly, mining blocks of simulated orebody models are clustered using TopCone algorithm to significantly reduce the scale of the data. A new SIP model is then developed to work on aggregated blocks so not only the net present value (NPV) is maximised and the risk of not meeting production targets is minimised, but also solution can be obtained in a practical timeframe. The scheduling result of the new SIP model is also compared to an integer programming (IP) model to highlight the ability to manage risk and generating higher NPV on a case study of a large-scale multi-element iron ore deposit in Pilbara region, Western Australia.

Suggested Citation

  • Mai, Ngoc Luan & Topal, Erkan & Erten, Oktay & Sommerville, Bruce, 2019. "A new risk-based optimisation method for the iron ore production scheduling using stochastic integer programming," Resources Policy, Elsevier, vol. 62(C), pages 571-579.
  • Handle: RePEc:eee:jrpoli:v:62:y:2019:i:c:p:571-579
    DOI: 10.1016/j.resourpol.2018.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420717302763
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2018.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Azimi, Yousuf & Osanloo, Morteza & Esfahanipour, Akbar, 2013. "An uncertainty based multi-criteria ranking system for open pit mining cut-off grade strategy selection," Resources Policy, Elsevier, vol. 38(2), pages 212-223.
    2. Ramazan, Salih, 2007. "The new Fundamental Tree Algorithm for production scheduling of open pit mines," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1153-1166, March.
    3. Lamghari, Amina & Dimitrakopoulos, Roussos, 2012. "A diversified Tabu search approach for the open-pit mine production scheduling problem with metal uncertainty," European Journal of Operational Research, Elsevier, vol. 222(3), pages 642-652.
    4. Renaud Chicoisne & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Enrique Rubio, 2012. "A New Algorithm for the Open-Pit Mine Production Scheduling Problem," Operations Research, INFORMS, vol. 60(3), pages 517-528, June.
    5. Asad, Mohammad Waqar Ali & Dimitrakopoulos, Roussos, 2013. "A heuristic approach to stochastic cutoff grade optimization for open pit mining complexes with multiple processing streams," Resources Policy, Elsevier, vol. 38(4), pages 591-597.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yıldız, Taşkın Deniz, 2022. "Considering the recent increase in license fees in Turkey, how can the negative effect of the fees on the mining operating costs be reduced?," Resources Policy, Elsevier, vol. 77(C).
    2. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    3. Kim, Yoochan & Ghosh, Apurna & Topal, Erkan & Chang, Ping, 2023. "Performance of different models in iron ore price prediction during the time of commodity price spike," Resources Policy, Elsevier, vol. 80(C).
    4. Armstrong, Margaret & Lagos, Tomas & Emery, Xavier & Homem-de-Mello, Tito & Lagos, Guido & Sauré, Denis, 2021. "Adaptive open-pit mining planning under geological uncertainty," Resources Policy, Elsevier, vol. 72(C).
    5. Yifei Zhao & Jianhong Chen & Hideki Shimada & Takashi Sasaoka, 2023. "Non-Ferrous Metal Price Point and Interval Prediction Based on Variational Mode Decomposition and Optimized LSTM Network," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    6. Jin-Biao Lu & Zhi-Jiang Liu & Dmitry Tulenty & Liudmila Tsvetkova & Sebastian Kot, 2021. "Implementation of Stochastic Analysis in Corporate Decision-Making Models," Mathematics, MDPI, vol. 9(9), pages 1-16, May.
    7. Ashish Kumar & Roussos Dimitrakopoulos & Marco Maulen, 2020. "Adaptive self-learning mechanisms for updating short-term production decisions in an industrial mining complex," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1795-1811, October.
    8. Nelis, Gonzalo & Morales, Nelson & Jelvez, Enrique, 2023. "Optimal mining cut definition and short-term open pit production scheduling under geological uncertainty," Resources Policy, Elsevier, vol. 81(C).
    9. Yıldız, Taşkın Deniz, 2022. "Supervisor fund expectation for the guarantee of salaries in the presence of the effect of permanent supervisor salaries on mining operating costs in Turkey," Resources Policy, Elsevier, vol. 77(C).
    10. Cinna Seifi & Marco Schulze & Jürgen Zimmermann, 2021. "Solution procedures for block selection and sequencing in flat-bedded potash underground mines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 409-440, June.
    11. Yıldız, Taşkın Deniz, 2023. "Changes in the salaries of mining engineers as they obtain managerial and OHS specialist positions in Turkey: By what criteria can salaries be increased?," Resources Policy, Elsevier, vol. 84(C).
    12. Enrique Jelvez & Julian Ortiz & Nelson Morales Varela & Hooman Askari-Nasab & Gonzalo Nelis, 2023. "A Multi-Stage Methodology for Long-Term Open-Pit Mine Production Planning under Ore Grade Uncertainty," Mathematics, MDPI, vol. 11(18), pages 1-19, September.
    13. Gilani, Seyyed-Omid & Sattarvand, Javad & Hajihassani, Mohsen & Abdullah, Shahrum Shah, 2020. "A stochastic particle swarm based model for long term production planning of open pit mines considering the geological uncertainty," Resources Policy, Elsevier, vol. 68(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    2. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2017. "A methodology for the large-scale multi-period precedence-constrained knapsack problem: an application in the mining industry," International Journal of Production Economics, Elsevier, vol. 193(C), pages 12-20.
    3. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    4. Lamghari, Amina & Dimitrakopoulos, Roussos, 2016. "Network-flow based algorithms for scheduling production in multi-processor open-pit mines accounting for metal uncertainty," European Journal of Operational Research, Elsevier, vol. 250(1), pages 273-290.
    5. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan & Asad, Mohammad Waqar Ali, 2020. "Simultaneous stochastic optimization of production sequence and dynamic cut-off grades in an open pit mining operation," Resources Policy, Elsevier, vol. 66(C).
    6. Shishvan, Masoud Soleymani & Sattarvand, Javad, 2015. "Long term production planning of open pit mines by ant colony optimization," European Journal of Operational Research, Elsevier, vol. 240(3), pages 825-836.
    7. Zhang, Jian & Nault, Barrie R. & Dimitrakopoulos, Roussos G., 2019. "Optimizing a mineral value chain with market uncertainty using benders decomposition," European Journal of Operational Research, Elsevier, vol. 274(1), pages 227-239.
    8. Zhang, Jian & Dimitrakopoulos, Roussos G., 2017. "A dynamic-material-value-based decomposition method for optimizing a mineral value chain with uncertainty," European Journal of Operational Research, Elsevier, vol. 258(2), pages 617-625.
    9. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan, 2021. "Open-pit mining complex optimization under uncertainty with integrated cut-off grade based destination policies," Resources Policy, Elsevier, vol. 70(C).
    10. Chatterjee, Snehamoy & Sethi, Manas Ranjan & Asad, Mohammad Waqar Ali, 2016. "Production phase and ultimate pit limit design under commodity price uncertainty," European Journal of Operational Research, Elsevier, vol. 248(2), pages 658-667.
    11. Biswas, Pritam & Sinha, Rabindra Kumar & Sen, Phalguni, 2023. "A review of state-of-the-art techniques for the determination of the optimum cut-off grade of a metalliferous deposit with a bibliometric mapping in a surface mine planning context," Resources Policy, Elsevier, vol. 83(C).
    12. King, Barry & Goycoolea, Marcos & Newman, A., 2017. "Optimizing the open pit-to-underground mining transition," European Journal of Operational Research, Elsevier, vol. 257(1), pages 297-309.
    13. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Cornillier, Fabien, 2020. "A new hybrid heuristic algorithm for the Precedence Constrained Production Scheduling Problem: A mining application," Omega, Elsevier, vol. 94(C).
    14. W. Lambert & A. Newman, 2014. "Tailored Lagrangian Relaxation for the open pit block sequencing problem," Annals of Operations Research, Springer, vol. 222(1), pages 419-438, November.
    15. Jyrki Savolainen & Ramin Rakhsha & Richard Durham, 2022. "Simulation-based decision-making system for optimal mine production plan selection," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(2), pages 267-281, June.
    16. Burdett, R.L. & Kozan, E., 2014. "An integrated approach for earthwork allocation, sequencing and routing," European Journal of Operational Research, Elsevier, vol. 238(3), pages 741-759.
    17. Asad, Mohammad Waqar Ali & Qureshi, Muhammad Asim & Jang, Hyongdoo, 2016. "A review of cut-off grade policy models for open pit mining operations," Resources Policy, Elsevier, vol. 49(C), pages 142-152.
    18. Khan, Asif & Asad, Mohammad Waqar Ali, 2019. "A method for optimal cut-off grade policy in open pit mining operations under uncertain supply," Resources Policy, Elsevier, vol. 60(C), pages 178-184.
    19. Moreno, Eduardo & Rezakhah, Mojtaba & Newman, Alexandra & Ferreira, Felipe, 2017. "Linear models for stockpiling in open-pit mine production scheduling problems," European Journal of Operational Research, Elsevier, vol. 260(1), pages 212-221.
    20. Danish, Abid Ali Khan & Khan, Asif & Muhammad, Khan & Ahmad, Waqas & Salman, Saad, 2021. "A simulated annealing based approach for open pit mine production scheduling with stockpiling option," Resources Policy, Elsevier, vol. 71(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:62:y:2019:i:c:p:571-579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.