IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v156y2004i3p550-565.html
   My bibliography  Save this item

The construction of stable project baseline schedules

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Wendi Tian & Erik Demeulemeester, 2014. "Railway scheduling reduces the expected project makespan over roadrunner scheduling in a multi-mode project scheduling environment," Annals of Operations Research, Springer, vol. 213(1), pages 271-291, February.
  2. Philippe Chrétienne, 2021. "Reactive and proactive single-machine scheduling to maintain a maximum number of starting times," Annals of Operations Research, Springer, vol. 298(1), pages 111-124, March.
  3. Yangyang Liang & Nanfang Cui & Tian Wang & Erik Demeulemeester, 2019. "Robust resource-constrained max-NPV project scheduling with stochastic activity duration," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 219-254, March.
  4. Morteza Davari & Erik Demeulemeester, 2019. "The proactive and reactive resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 22(2), pages 211-237, April.
  5. Adèle Pass-Lanneau & Pascale Bendotti & Luca Brunod-Indrigo, 2024. "Exact and heuristic methods for Anchor-Robust and Adjustable-Robust RCPSP," Annals of Operations Research, Springer, vol. 337(2), pages 649-682, June.
  6. Balouka, Noemie & Cohen, Izack, 2021. "A robust optimization approach for the multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 291(2), pages 457-470.
  7. Philippe Chrétienne, 2020. "Maximizing the number of jobs scheduled at their baseline starting times in case of machine failures," Journal of Scheduling, Springer, vol. 23(1), pages 135-143, February.
  8. Bruni, M.E. & Di Puglia Pugliese, L. & Beraldi, P. & Guerriero, F., 2017. "An adjustable robust optimization model for the resource-constrained project scheduling problem with uncertain activity durations," Omega, Elsevier, vol. 71(C), pages 66-84.
  9. Bendotti, Pascale & Chrétienne, Philippe & Fouilhoux, Pierre & Quilliot, Alain, 2017. "Anchored reactive and proactive solutions to the CPM-scheduling problem," European Journal of Operational Research, Elsevier, vol. 261(1), pages 67-74.
  10. Song, Jie & Martens, Annelies & Vanhoucke, Mario, 2022. "Using Earned Value Management and Schedule Risk Analysis with resource constraints for project control," European Journal of Operational Research, Elsevier, vol. 297(2), pages 451-466.
  11. Xiang Chu & Qiu-Yan Zhong & Shahid G. Khokhar, 2015. "Triage Scheduling Optimization for Mass Casualty and Disaster Response," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(06), pages 1-20, December.
  12. Briskorn, Dirk & Leung, Joseph & Pinedo, Michael, 2008. "Robust scheduling on a single machine usinge time buffers," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 639, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  13. Wei Chen & Ying Zhao & Yangqing Yu & Kaiman Chen & Mehrdad Arashpour, 2020. "Collaborative Scheduling of On-Site and Off-Site Operations in Prefabrication," Sustainability, MDPI, vol. 12(21), pages 1-21, November.
  14. Bendotti, Pascale & Chrétienne, Philippe & Fouilhoux, Pierre & Pass-Lanneau, Adèle, 2021. "Dominance-based linear formulation for the Anchor-Robust Project Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 295(1), pages 22-33.
  15. Elmaghraby, Salah E., 2005. "On the fallacy of averages in project risk management," European Journal of Operational Research, Elsevier, vol. 165(2), pages 307-313, September.
  16. Yan Zhao & Nanfang Cui & Wendi Tian, 2020. "A two-stage approach for the critical chain project rescheduling," Annals of Operations Research, Springer, vol. 285(1), pages 67-95, February.
  17. Said, Samer S. & Haouari, Mohamed, 2015. "A hybrid simulation-optimization approach for the robust Discrete Time/Cost Trade-off Problem," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 628-636.
  18. Song, Jie & Martens, Annelies & Vanhoucke, Mario, 2021. "Using Schedule Risk Analysis with resource constraints for project control," European Journal of Operational Research, Elsevier, vol. 288(3), pages 736-752.
  19. Bowman, R. Alan, 2006. "Developing activity duration specification limits for effective project control," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1191-1204, October.
  20. Xiyang Liu & Fangjun Luan, 2025. "Improved black widow optimization algorithm for multi-objective hybrid flow shop batch-scheduling problem," Journal of Combinatorial Optimization, Springer, vol. 49(3), pages 1-29, April.
  21. Szmerekovsky, Joseph G. & Venkateshan, Prahalad & Simonson, Peter D., 2023. "Project scheduling under the threat of catastrophic disruption," European Journal of Operational Research, Elsevier, vol. 309(2), pages 784-794.
  22. Van de Vonder, Stijn & Demeulemeester, Erik & Herroelen, Willy & Leus, Roel, 2005. "The use of buffers in project management: The trade-off between stability and makespan," International Journal of Production Economics, Elsevier, vol. 97(2), pages 227-240, August.
  23. Olivier Lambrechts & Erik Demeulemeester & Willy Herroelen, 2011. "Time slack-based techniques for robust project scheduling subject to resource uncertainty," Annals of Operations Research, Springer, vol. 186(1), pages 443-464, June.
  24. Herroelen, Willy & Leus, Roel, 2005. "Project scheduling under uncertainty: Survey and research potentials," European Journal of Operational Research, Elsevier, vol. 165(2), pages 289-306, September.
  25. Hongbo Li & Erik Demeulemeester, 2016. "A genetic algorithm for the robust resource leveling problem," Journal of Scheduling, Springer, vol. 19(1), pages 43-60, February.
  26. Kerkhove, L.-P. & Vanhoucke, M., 2017. "Optimised scheduling for weather sensitive offshore construction projects," Omega, Elsevier, vol. 66(PA), pages 58-78.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.