IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v49y2025i3d10.1007_s10878-025-01270-x.html
   My bibliography  Save this article

Improved black widow optimization algorithm for multi-objective hybrid flow shop batch-scheduling problem

Author

Listed:
  • Xiyang Liu

    (Shenyang Jianzhu University)

  • Fangjun Luan

    (Shenyang Jianzhu University)

Abstract

Sustainable scheduling is getting more and more attention with economic globalization and sustainable manufacturing. However, fewer studies on the batch scheduling problem consider energy consumption. This paper conducts an investigation into the multi-objective hybrid flow shop batch-scheduling problem with the objectives of minimizing both the makespan and electrical energy consumption. The study aims to select the optimal scheduling solution for the problem by considering batch splitting for all products. In this paper, we propose an improved black widow optimization (IBWO) algorithm to study the problem, which incorporates procreation, cannibalism, and mutation behaviors to maintain the population’s diversity and stability. To achieve our objectives, we use the dynamic entropy weight topsis method to select individual spiders. Finally, we use the nature theorem construction method, which relies on the property theorem, to solve the Pareto solution set and derive the optimization scheme for the hybrid flow shop batch scheduling problem. We verify the effectiveness of the proposed IBWO on instances of varying sizes. When we keep all other factors and cases constant, we compare the IBWO to the NSGA2 algorithm and find that it converges faster for both goals and has lower goals than the NSGA2.

Suggested Citation

  • Xiyang Liu & Fangjun Luan, 2025. "Improved black widow optimization algorithm for multi-objective hybrid flow shop batch-scheduling problem," Journal of Combinatorial Optimization, Springer, vol. 49(3), pages 1-29, April.
  • Handle: RePEc:spr:jcomop:v:49:y:2025:i:3:d:10.1007_s10878-025-01270-x
    DOI: 10.1007/s10878-025-01270-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-025-01270-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-025-01270-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tzu-Li Chen & Chen-Yang Cheng & Yi-Han Chou, 2020. "Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming," Annals of Operations Research, Springer, vol. 290(1), pages 813-836, July.
    2. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    3. Jae-Min Yu & Rong Huang & Dong-Ho Lee, 2017. "Iterative algorithms for batching and scheduling to minimise the total job tardiness in two-stage hybrid flow shops," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3266-3282, June.
    4. Xu Zheng & Shengchao Zhou & Rui Xu & Huaping Chen, 2020. "Energy-efficient scheduling for multi-objective two-stage flow shop using a hybrid ant colony optimisation algorithm," International Journal of Production Research, Taylor & Francis Journals, vol. 58(13), pages 4103-4120, July.
    5. Zheming Yan & Rui Shi & Kerui Du & Lan Yi, 2022. "The role of green production process innovation in green manufacturing: empirical evidence from OECD countries," Applied Economics, Taylor & Francis Journals, vol. 54(59), pages 6755-6767, December.
    6. Onur Ozturk & Mehmet A. Begen & Gregory S. Zaric, 2017. "A branch and bound algorithm for scheduling unit size jobs on parallel batching machines to minimize makespan," International Journal of Production Research, Taylor & Francis Journals, vol. 55(6), pages 1815-1831, March.
    7. Wang, Yanxia & Li, Kang & Gan, Shaojun & Cameron, Ché, 2019. "Analysis of energy saving potentials in intelligent manufacturing: A case study of bakery plants," Energy, Elsevier, vol. 172(C), pages 477-486.
    8. Jaime Antero Arango-Marin, 2022. "Programming tasks in business processes like a realistic hybrid flexible flow shop using genetic algorithms," International Journal of Process Management and Benchmarking, Inderscience Enterprises Ltd, vol. 12(2), pages 131-146.
    9. Federico Echenique & Mat'ias N'u~nez, 2022. "Price & Choose," Papers 2212.05650, arXiv.org, revised Apr 2023.
    10. Jiachen Tu & Liang Zhang, 2022. "Performance analysis and optimisation of Bernoulli serial production lines with dynamic real-time bottleneck identification and mitigation," International Journal of Production Research, Taylor & Francis Journals, vol. 60(13), pages 3989-4005, July.
    11. Neufeld, Janis S. & Schulz, Sven & Buscher, Udo, 2023. "A systematic review of multi-objective hybrid flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 309(1), pages 1-23.
    12. Tao Meng & Quan-Ke Pan & Hong-Yan Sang, 2018. "A hybrid artificial bee colony algorithm for a flexible job shop scheduling problem with overlapping in operations," International Journal of Production Research, Taylor & Francis Journals, vol. 56(16), pages 5278-5292, August.
    13. Herroelen, Willy & Leus, Roel, 2004. "The construction of stable project baseline schedules," European Journal of Operational Research, Elsevier, vol. 156(3), pages 550-565, August.
    14. James C. Bean, 1994. "Genetic Algorithms and Random Keys for Sequencing and Optimization," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 154-160, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paola Festa & Panos Pardalos, 2012. "Efficient solutions for the far from most string problem," Annals of Operations Research, Springer, vol. 196(1), pages 663-682, July.
    2. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    3. Qingzheng Xu & Na Wang & Lei Wang & Wei Li & Qian Sun, 2021. "Multi-Task Optimization and Multi-Task Evolutionary Computation in the Past Five Years: A Brief Review," Mathematics, MDPI, vol. 9(8), pages 1-44, April.
    4. Xiao, Lei & Zhang, Xinghui & Tang, Junxuan & Zhou, Yaqin, 2020. "Joint optimization of opportunistic maintenance and production scheduling considering batch production mode and varying operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    5. Wei Wang & Yaofeng Xu & Liguo Hou, 2019. "Optimal allocation of test times for reliability growth testing with interval-valued model parameters," Journal of Risk and Reliability, , vol. 233(5), pages 791-802, October.
    6. Jun Pei & Bayi Cheng & Xinbao Liu & Panos M. Pardalos & Min Kong, 2019. "Single-machine and parallel-machine serial-batching scheduling problems with position-based learning effect and linear setup time," Annals of Operations Research, Springer, vol. 272(1), pages 217-241, January.
    7. Christos Koulamas, 1997. "Decomposition and hybrid simulated annealing heuristics for the parallel‐machine total tardiness problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 109-125, February.
    8. F. Stefanello & L. S. Buriol & M. J. Hirsch & P. M. Pardalos & T. Querido & M. G. C. Resende & M. Ritt, 2017. "On the minimization of traffic congestion in road networks with tolls," Annals of Operations Research, Springer, vol. 249(1), pages 119-139, February.
    9. Drexl, Andreas & Salewski, Frank, 1996. "Distribution Requirements and Compactness Constraints in School Timetabling. Part II: Methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 384, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    10. José Fernando Gonçalves & Mauricio G. C. Resende, 2011. "A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 180-201, August.
    11. Soares, Leonardo Cabral R. & Carvalho, Marco Antonio M., 2020. "Biased random-key genetic algorithm for scheduling identical parallel machines with tooling constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 955-964.
    12. Yamachi, Hidemi & Tsujimura, Yasuhiro & Kambayashi, Yasushi & Yamamoto, Hisashi, 2006. "Multi-objective genetic algorithm for solving N-version program design problem," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1083-1094.
    13. A H Kashan & B Karimi, 2008. "Scheduling a single batch-processing machine with arbitrary job sizes and incompatible job families: An ant colony framework," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1269-1280, September.
    14. Thi-Kien Dao & Tien-Szu Pan & Trong-The Nguyen & Jeng-Shyang Pan, 2018. "Parallel bat algorithm for optimizing makespan in job shop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 451-462, February.
    15. Wang, Wei & Wu, Zhiying & Xiong, Junlin & Xu, Yaofeng, 2018. "Redundancy optimization of cold-standby systems under periodic inspection and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 394-402.
    16. L. A. C. Roque & D. B. M. M. Fontes & F. A. C. C. Fontes, 2014. "A hybrid biased random key genetic algorithm approach for the unit commitment problem," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 140-166, July.
    17. Gonçalves, José Fernando & Wäscher, Gerhard, 2020. "A MIP model and a biased random-key genetic algorithm based approach for a two-dimensional cutting problem with defects," European Journal of Operational Research, Elsevier, vol. 286(3), pages 867-882.
    18. Dayong Han & Qiuhua Tang & Zikai Zhang & Zixiang Li, 2020. "An Improved Migrating Birds Optimization Algorithm for a Hybrid Flow Shop Scheduling within Steel Plants," Mathematics, MDPI, vol. 8(10), pages 1-28, September.
    19. Wang, Haibo & Alidaee, Bahram, 2019. "The multi-floor cross-dock door assignment problem: Rising challenges for the new trend in logistics industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 30-47.
    20. Zamani, Shokufeh & Arkat, Jamal & Niaki, Seyed Taghi Akhavan, 2022. "Service interruption and customer withdrawal in the congested facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:49:y:2025:i:3:d:10.1007_s10878-025-01270-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.