IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v254y2019ics0306261919313807.html
   My bibliography  Save this item

Residential loads flexibility potential for demand response using energy consumption patterns and user segments

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Luo, Xi & Liu, Yanfeng & Feng, Pingan & Gao, Yuan & Guo, Zhenxiang, 2021. "Optimization of a solar-based integrated energy system considering interaction between generation, network, and demand side," Applied Energy, Elsevier, vol. 294(C).
  2. Bruno Mota & Luis Gomes & Pedro Faria & Carlos Ramos & Zita Vale & Regina Correia, 2021. "Production Line Optimization to Minimize Energy Cost and Participate in Demand Response Events," Energies, MDPI, vol. 14(2), pages 1-14, January.
  3. Beccali, Marco & Bellia, Laura & Fragliasso, Francesca & Bonomolo, Marina & Zizzo, Gaetano & Spada, Gennaro, 2020. "Assessing the lighting systems flexibility for reducing and managing the power peaks in smart grids," Applied Energy, Elsevier, vol. 268(C).
  4. Zhang, Yuanshi & Qian, Wenyan & Ye, Yujian & Li, Yang & Tang, Yi & Long, Yu & Duan, Meimei, 2023. "A novel non-intrusive load monitoring method based on ResNet-seq2seq networks for energy disaggregation of distributed energy resources integrated with residential houses," Applied Energy, Elsevier, vol. 349(C).
  5. Jaka Rober & Leon Maruša & Miloš Beković, 2023. "A Machine Learning Application for the Energy Flexibility Assessment of a Distribution Network for Consumers," Energies, MDPI, vol. 16(17), pages 1-20, August.
  6. Navid Rezaei & Abdollah Ahmadi & Mohammadhossein Deihimi, 2022. "A Comprehensive Review of Demand-Side Management Based on Analysis of Productivity: Techniques and Applications," Energies, MDPI, vol. 15(20), pages 1-28, October.
  7. Song, Yuguang & Chen, Fangjian & Xia, Mingchao & Chen, Qifang, 2022. "The interactive dispatch strategy for thermostatically controlled loads based on the source–load collaborative evolution," Applied Energy, Elsevier, vol. 309(C).
  8. Naderi, Shayan & Heslop, Simon & Chen, Dong & Watts, Scott & MacGill, Iain & Pignatta, Gloria & Sproul, Alistair, 2023. "Clustering based analysis of residential duck curve mitigation through solar pre-cooling: A case study of Australian housing stock," Renewable Energy, Elsevier, vol. 216(C).
  9. Chen, Xiao & Zanocco, Chad & Flora, June & Rajagopal, Ram, 2022. "Constructing dynamic residential energy lifestyles using Latent Dirichlet Allocation," Applied Energy, Elsevier, vol. 318(C).
  10. O'Connell, Sarah & Reynders, Glenn & Keane, Marcus M., 2021. "Impact of source variability on flexibility for demand response," Energy, Elsevier, vol. 237(C).
  11. Liu, Yinyan & Ma, Jin & Xing, Xinjie & Liu, Xinglu & Wang, Wei, 2022. "A home energy management system incorporating data-driven uncertainty-aware user preference," Applied Energy, Elsevier, vol. 326(C).
  12. Eunjung Lee & Keon Baek & Jinho Kim, 2020. "Evaluation of Demand Response Potential Flexibility in the Industry Based on a Data-Driven Approach," Energies, MDPI, vol. 13(23), pages 1-12, December.
  13. Liu, Hong & Zhao, Yue & Gu, Chenghong & Ge, Shaoyun & Yang, Zan, 2021. "Adjustable capability of the distributed energy system: Definition, framework, and evaluation model," Energy, Elsevier, vol. 222(C).
  14. Song, Kwonsik & Anderson, Kyle & Lee, SangHyun, 2020. "An energy-cyber-physical system for personalized normative messaging interventions: Identification and classification of behavioral reference groups," Applied Energy, Elsevier, vol. 260(C).
  15. Zhao, Pengxiang & Dong, Zhao Yang & Meng, Ke & Kong, Weicong & Yang, Jiajia, 2021. "Household power usage pattern filtering-based residential electricity plan recommender system," Applied Energy, Elsevier, vol. 298(C).
  16. Etxandi-Santolaya, Maite & Colet-Subirachs, Alba & Barbero, Mattia & Corchero, Cristina, 2023. "Development of a platform for the assessment of demand-side flexibility in a microgrid laboratory," Applied Energy, Elsevier, vol. 331(C).
  17. Kong, Xiangyu & Wang, Zhengtao & Liu, Chao & Zhang, Delong & Gao, Hongchao, 2023. "Refined peak shaving potential assessment and differentiated decision-making method for user load in virtual power plants," Applied Energy, Elsevier, vol. 334(C).
  18. Jung, Wooyoung & Jazizadeh, Farrokh, 2020. "Energy saving potentials of integrating personal thermal comfort models for control of building systems: Comprehensive quantification through combinatorial consideration of influential parameters," Applied Energy, Elsevier, vol. 268(C).
  19. Kang, J. & Reiner, D., 2021. "Identifying residential consumption patterns using data-mining techniques: A large-scale study of smart meter data in Chengdu, China," Cambridge Working Papers in Economics 2143, Faculty of Economics, University of Cambridge.
  20. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
  21. Ku, Arthur Lin & Qiu, Yueming (Lucy) & Lou, Jiehong & Nock, Destenie & Xing, Bo, 2022. "Changes in hourly electricity consumption under COVID mandates: A glance to future hourly residential power consumption pattern with remote work in Arizona," Applied Energy, Elsevier, vol. 310(C).
  22. Yang, Wangwang & Shi, Jing & Li, Shujian & Song, Zhaofang & Zhang, Zitong & Chen, Zexu, 2022. "A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior," Applied Energy, Elsevier, vol. 307(C).
  23. Song, Zhaofang & Shi, Jing & Li, Shujian & Chen, Zexu & Jiao, Fengshun & Yang, Wangwang & Zhang, Zitong, 2022. "Data-driven and physical model-based evaluation method for the achievable demand response potential of residential consumers' air conditioning loads," Applied Energy, Elsevier, vol. 307(C).
  24. Luo, Na & Langevin, Jared & Chandra-Putra, Handi & Lee, Sang Hoon, 2022. "Quantifying the effect of multiple load flexibility strategies on commercial building electricity demand and services via surrogate modeling," Applied Energy, Elsevier, vol. 309(C).
  25. Mishra, Kakuli & Basu, Srinka & Maulik, Ujjwal, 2022. "Load profile mining using directed weighted graphs with application towards demand response management," Applied Energy, Elsevier, vol. 311(C).
  26. Troy Malatesta & Jessica K. Breadsell, 2022. "Identifying Home System of Practices for Energy Use with K-Means Clustering Techniques," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
  27. Francesco Mancini & Jacopo Cimaglia & Gianluigi Lo Basso & Sabrina Romano, 2021. "Implementation and Simulation of Real Load Shifting Scenarios Based on a Flexibility Price Market Strategy—The Italian Residential Sector as a Case Study," Energies, MDPI, vol. 14(11), pages 1-21, May.
  28. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Peer-to-Peer trading with Demand Response using proposed smart bidding strategy," Applied Energy, Elsevier, vol. 327(C).
  29. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
  30. Hlalele, Thabo G. & Zhang, Jiangfeng & Naidoo, Raj M. & Bansal, Ramesh C., 2021. "Multi-objective economic dispatch with residential demand response programme under renewable obligation," Energy, Elsevier, vol. 218(C).
  31. Felix Heider & Amra Jahic & Maik Plenz & Detlef Schulz, 2022. "Extended Residential Power Management Interface for Flexibility Communication and Uncertainty Reduction for Flexibility System Operators," Energies, MDPI, vol. 15(4), pages 1-23, February.
  32. Olivella, Jordi & Domenech, Bruno & Calleja, Gema, 2021. "Potential of implementation of residential photovoltaics at city level: The case of London," Renewable Energy, Elsevier, vol. 180(C), pages 577-585.
  33. Junker, Rune Grønborg & Kallesøe, Carsten Skovmose & Real, Jaume Palmer & Howard, Bianca & Lopes, Rui Amaral & Madsen, Henrik, 2020. "Stochastic nonlinear modelling and application of price-based energy flexibility," Applied Energy, Elsevier, vol. 275(C).
  34. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
  35. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
  36. Chen, Yongbao & Zhang, Lixin & Xu, Peng & Di Gangi, Alessandra, 2021. "Electricity demand response schemes in China: Pilot study and future outlook," Energy, Elsevier, vol. 224(C).
  37. Milad Afzalan & Farrokh Jazizadeh, 2021. "Quantification of Demand-Supply Balancing Capacity among Prosumers and Consumers: Community Self-Sufficiency Assessment for Energy Trading," Energies, MDPI, vol. 14(14), pages 1-21, July.
  38. Qingyang Wu, 2023. "Sustainable growth through industrial robot diffusion: Quasi‐experimental evidence from a Bartik shift‐share design," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 31(4), pages 1107-1133, October.
  39. Kamalanathan Ganesan & Jo~ao Tom'e Saraiva & Ricardo J. Bessa, 2021. "Functional Model of Residential Consumption Elasticity under Dynamic Tariffs," Papers 2111.11875, arXiv.org.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.