IDEAS home Printed from https://ideas.repec.org/r/cma/wpaper/1006.html
   My bibliography  Save this item

Recurrence quantification analysis of global stock markets

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Kiran Sharma & Shreyansh Shah & Anindya S. Chakrabarti & Anirban Chakraborti, 2016. "Sectoral co-movements in the Indian stock market: A mesoscopic network analysis," Papers 1607.05514, arXiv.org.
  2. Halari, Anwar & Helliar, Christine & Power, David M. & Tantisantiwong, Nongnuch, 2019. "Taking advantage of Ramadan and January in Muslim countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 74(C), pages 85-96.
  3. B. Goswami & G. Ambika & N. Marwan & J. Kurths, 2011. "On interrelations of recurrences and connectivity trends between stock indices," Papers 1103.5189, arXiv.org.
  4. Xu, Mengjia & Shang, Pengjian & Lin, Aijing, 2017. "Multiscale recurrence quantification analysis of order recurrence plots," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 381-389.
  5. Fatoorehchi, Hooman & Zarghami, Reza & Abolghasemi, Hossein & Rach, Randolph, 2015. "Chaos control in the cerium-catalyzed Belousov–Zhabotinsky reaction using recurrence quantification analysis measures," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 121-129.
  6. Sanjay Sathish & Charu C Sharma, 2024. "Leveraging RNNs and LSTMs for Synchronization Analysis in the Indian Stock Market: A Threshold-Based Classification Approach," Papers 2409.06728, arXiv.org.
  7. Yao, Can-Zhong & Lin, Qing-Wen, 2017. "Recurrence plots analysis of the CNY exchange markets based on phase space reconstruction," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 584-596.
  8. Chen, Yuan & Lin, Aijing, 2022. "Order pattern recurrence for the analysis of complex systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
  9. Sergii Piskun & Oleksandr Piskun & Dmitry Chabanenko, 2011. "RQA Application for the Monitoring of Financial and Commodity markets state," Papers 1112.0297, arXiv.org.
  10. Ioannis Andreadis & Athanasios D. Fragkou & Theodoros E. Karakasidis & Apostolos Serletis, 2023. "Nonlinear dynamics in Divisia monetary aggregates: an application of recurrence quantification analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-17, December.
  11. Teresa Aparicio & Dulce Saura, 2013. "Do Exchange Rate Series Present General Dependence? Some Results using Recurrence Quantification Analysis," Journal of Economics and Behavioral Studies, AMH International, vol. 5(10), pages 678-686.
  12. M. Shabani & M. Magris & George Tzagkarakis & J. Kanniainen & A. Iosifidis, 2023. "Predicting the state of synchronization of financial time series using cross recurrence plots," Post-Print hal-04415269, HAL.
  13. Sandoval, Leonidas Junior, 2013. "To lag or not to lag? How to compare indices of stock markets that operate at different times," Insper Working Papers wpe_319, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
  14. Ashe, Sinéad & Egan, Paul, 2023. "Examining financial and business cycle interaction using cross recurrence plot analysis," Finance Research Letters, Elsevier, vol. 51(C).
  15. Juan Meng & Bin Mo & He Nie, 2023. "The dynamics of crude oil future prices on China's energy markets: Quantile‐on‐quantile and casualty‐in‐quantiles approaches," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(12), pages 1853-1871, December.
  16. M., Krishnadas & Harikrishnan, K.P. & Ambika, G., 2022. "Recurrence measures and transitions in stock market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
  17. Juan Benjamín Duarte Duarte & Juan Manuel Mascare?nas Pérez-Iñigo, 2014. "Comprobación de la eficiencia débil en los principales mercados financieros latinoamericanos," Estudios Gerenciales, Universidad Icesi, November.
  18. Jiang, Runze & Shang, Pengjian & Yin, Yi, 2025. "Global ordinal pattern attention entropy: A novel feature extraction method for complex signals," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
  19. Mostafa Shabani & Martin Magris & George Tzagkarakis & Juho Kanniainen & Alexandros Iosifidis, 2022. "Predicting the State of Synchronization of Financial Time Series using Cross Recurrence Plots," Papers 2210.14605, arXiv.org, revised Nov 2022.
  20. Krishnadas M. & K. P. Harikrishnan & G. Ambika, 2022. "Recurrence measures and transitions in stock market dynamics," Papers 2208.03456, arXiv.org.
  21. Froguel, Lucas Belasque & de Lima Prado, Thiago & Corso, Gilberto & dos Santos Lima, Gustavo Zampier & Lopes, Sergio Roberto, 2022. "Efficient computation of recurrence quantification analysis via microstates," Applied Mathematics and Computation, Elsevier, vol. 428(C).
  22. Marisa Faggini, 2011. "Chaotic Time Series Analysis in Economics: Balance and Perspectives," Working papers 25, Former Department of Economics and Public Finance "G. Prato", University of Torino.
  23. Goswami, B. & Ambika, G. & Marwan, N. & Kurths, J., 2012. "On interrelations of recurrences and connectivity trends between stock indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4364-4376.
  24. Tantisantiwong, Nongnuch & Halari, Anwar & Helliar, Christine & Power, David, 2018. "East meets West: When the Islamic and Gregorian calendars coincide," The British Accounting Review, Elsevier, vol. 50(4), pages 402-424.
  25. Giuseppe Orlando & Giovanna Zimatore, 2021. "Recurrence Quantification Analysis of Business Cycles," Dynamic Modeling and Econometrics in Economics and Finance, in: Giuseppe Orlando & Alexander N. Pisarchik & Ruedi Stoop (ed.), Nonlinearities in Economics, chapter 0, pages 269-282, Springer.
  26. Marisa Faggini & Bruna Bruno & Anna Parziale, 2019. "Does Chaos Matter in Financial Time Series Analysis?," International Journal of Economics and Financial Issues, Econjournals, vol. 9(4), pages 18-24.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.