IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v191y2025ics0960077924013626.html
   My bibliography  Save this article

Global ordinal pattern attention entropy: A novel feature extraction method for complex signals

Author

Listed:
  • Jiang, Runze
  • Shang, Pengjian
  • Yin, Yi

Abstract

Entropy serves as an effective method for quantifying the irregularity and complexity of nonlinear time series or complex signals. Recently, a novel entropy measure, attention entropy (AE), has been introduced for detecting interbeat interval time series. However, the original AE focuses solely on peak points, potentially overlooking crucial information embedded in signals. In this paper, we present the global ordinal pattern attention entropy (GOPAE), a novel measure that integrates AE with the principles of phase space reconstruction (PSR). Additionally, the connections between GOPAE and state-of-the-art time series network methods, including ordinal pattern transition network (OPTN) and recurrence quantification analysis (RQA), are elucidated to showcase its proficiency in extracting dynamic information from complex signals. Comparative experiments, both qualitative and quantitative, are conducted, using both simulated data and real-world signals. The results of the experiments suggest that GOPAE can effectively distinguishing complex signals in real application scenarios.

Suggested Citation

  • Jiang, Runze & Shang, Pengjian & Yin, Yi, 2025. "Global ordinal pattern attention entropy: A novel feature extraction method for complex signals," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924013626
    DOI: 10.1016/j.chaos.2024.115810
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924013626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115810?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yalin & Xu, Yan & Liu, Minghui & Guo, Yao & Wu, Yonglin & Chen, Chen & Chen, Wei, 2022. "Cumulative residual symbolic dispersion entropy and its multiscale version: Methodology, verification, and application," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Wang, Xiaoyan & Han, Xiujing & Chen, Zhangyao & Bi, Qinsheng & Guan, Shuguang & Zou, Yong, 2022. "Multi-scale transition network approaches for nonlinear time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    3. Bastos, João A. & Caiado, Jorge, 2011. "Recurrence quantification analysis of global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1315-1325.
    4. Zhao, Xiaojun & Shang, Pengjian & Lin, Aijing & Chen, Gang, 2011. "Multifractal Fourier detrended cross-correlation analysis of traffic signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3670-3678.
    5. Eyebe Fouda, Jean Sire Armand & Koepf, Wolfram & Marwan, Norbert & Kurths, Jürgen & Penzel, Thomas, 2024. "Complexity from ordinal pattern positioned slopes (COPPS)," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    6. Borges, João B. & Ramos, Heitor S. & Mini, Raquel A.F. & Rosso, Osvaldo A. & Frery, Alejandro C. & Loureiro, Antonio A.F., 2019. "Learning and distinguishing time series dynamics via ordinal patterns transition graphs," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    7. He, Qian & Yu, Fusheng, 2023. "Trend recurrence analysis and time series classification via trend fuzzy granular recurrence plot method," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    8. Huang, Jingjing & Shang, Pengjian & Zhao, Xiaojun, 2012. "Multifractal diffusion entropy analysis on stock volatility in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5739-5745.
    9. Ge, Xinlei & Lin, Aijing, 2023. "Symbolic convergent cross mapping based on permutation mutual information," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaoyan & Tang, Ming & Guan, Shuguang & Zou, Yong, 2023. "Quantifying time series complexity by multi-scale transition network approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    2. Xu, Mengjia & Shang, Pengjian & Lin, Aijing, 2017. "Multiscale recurrence quantification analysis of order recurrence plots," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 381-389.
    3. Zhai, Lu-Sheng & Liu, Ruo-Yu, 2019. "Local detrended cross-correlation analysis for non-stationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 222-233.
    4. Meo, Marcos M. & Iaconis, Francisco R. & Del Punta, Jessica A. & Delrieux, Claudio A. & Gasaneo, Gustavo, 2024. "Multifractal information on reading eye tracking data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    5. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    6. Li, Bao-Gen & Ling, Dian-Yi & Yu, Zu-Guo, 2021. "Multifractal temporally weighted detrended partial cross-correlation analysis of two non-stationary time series affected by common external factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    7. Chen, Yuan & Lin, Aijing, 2022. "Order pattern recurrence for the analysis of complex systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    8. Fan, Qingju & Li, Dan, 2015. "Multifractal cross-correlation analysis in electricity spot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 17-27.
    9. Teresa Aparicio & Dulce Saura, 2013. "Do Exchange Rate Series Present General Dependence? Some Results using Recurrence Quantification Analysis," Journal of Economics and Behavioral Studies, AMH International, vol. 5(10), pages 678-686.
    10. Yan, Ruzhen & Yue, Ding & Chen, Xudong & Wu, Xu, 2020. "Non-linear characterization and trend identification of liquidity in China's new OTC stock market based on multifractal detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Giuseppe Orlando & Giovanna Zimatore, 2021. "Recurrence Quantification Analysis of Business Cycles," Dynamic Modeling and Econometrics in Economics and Finance, in: Giuseppe Orlando & Alexander N. Pisarchik & Ruedi Stoop (ed.), Nonlinearities in Economics, chapter 0, pages 269-282, Springer.
    12. Yanguang Chen, 2015. "A New Methodology of Spatial Cross-Correlation Analysis," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-20, May.
    13. Sierra-Porta, D., 2024. "A multifractal approach to understanding Forbush Decrease events: Correlations with geomagnetic storms and space weather phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    14. Daniel Chiew & Judy Qiu & Sirimon Treepongkaruna & Jiping Yang & Chenxiao Shi, 2019. "The predictive ability of the expected utility-entropy based fund rating approach: A comparison investigation with Morningstar ratings in US," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-22, April.
    15. Krishnadas M. & K. P. Harikrishnan & G. Ambika, 2022. "Recurrence measures and transitions in stock market dynamics," Papers 2208.03456, arXiv.org.
    16. Kristoufek, Ladislav, 2015. "Power-law correlations in finance-related Google searches, and their cross-correlations with volatility and traded volume: Evidence from the Dow Jones Industrial components," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 194-205.
    17. Rodriguez-Romo, Suemi & Sosa-Herrera, Antonio, 2013. "Lacunarity and multifractal analysis of the large DLA mass distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3316-3328.
    18. Sandoval, Leonidas Junior, 2013. "To lag or not to lag? How to compare indices of stock markets that operate at different times," Insper Working Papers wpe_319, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    19. Ladislav Kristoufek, 2014. "Spectrum-based estimators of the bivariate Hurst exponent," Papers 1408.6637, arXiv.org, revised Nov 2014.
    20. Sierra-Porta, D. & Domínguez-Monterroza, Andy-Rafael, 2022. "Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924013626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.