IDEAS home Printed from https://ideas.repec.org/r/bla/scjsta/v29y2002i3p563-576.html

Empirical Likelihood‐based Inference in Linear Models with Missing Data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Biao Zhang, 2016. "Empirical Likelihood in Causal Inference," Econometric Reviews, Taylor & Francis Journals, vol. 35(2), pages 201-231, February.
  2. Yichuan Zhao & Ali Jinnah, 2012. "Inference for Cox’s regression models via adjusted empirical likelihood," Computational Statistics, Springer, vol. 27(1), pages 1-12, March.
  3. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2013. "Testing the linear errors-in-variables model with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 875-884.
  4. Bravo, Francesco & Escanciano, Juan Carlos & Van Keilegom, Ingrid, 2015. "Wilks' Phenomenon in Two-Step Semiparametric Empirical Likelihood Inference," LIDAM Discussion Papers ISBA 2015016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  5. Ruidong Han & Xinghui Wang & Shuhe Hu, 2018. "Asymptotics of the weighted least squares estimation for AR(1) processes with applications to confidence intervals," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 479-490, August.
  6. Yang, Hanfang & Zhao, Yichuan, 2015. "Smoothed jackknife empirical likelihood inference for ROC curves with missing data," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 123-138.
  7. Wang, Qihua & Yu, Keming, 2007. "Likelihood-based kernel estimation in semiparametric errors-in-covariables models with validation data," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 455-480, March.
  8. Xiaohui Liu & Qihua Wang & Yi Liu, 2017. "A consistent jackknife empirical likelihood test for distribution functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 249-269, April.
  9. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
  10. Yves G. Berger, 2020. "An empirical likelihood approach under cluster sampling with missing observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 91-121, February.
  11. Denis Heng Yan Leung & Ken Yamada & Biao Zhang, 2015. "Enriching Surveys with Supplementary Data and its Application to Studying Wage Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 155-179, March.
  12. Xue, Liugen & Zhang, Jinghua, 2020. "Empirical likelihood for partially linear single-index models with missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
  13. Jianglin Fang & Wanrong Liu & Xuewen Lu, 2018. "Empirical likelihood for heteroscedastic partially linear single-index models with growing dimensional data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 255-281, April.
  14. Wang, Qihua & Lai, Peng, 2011. "Empirical likelihood calibration estimation for the median treatment difference in observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1596-1609, April.
  15. Li, Gao-Rong & Zhu, Li-Ping & Zhu, Li-Xing, 2010. "Adaptive confidence region for the direction in semiparametric regressions," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1364-1377, July.
  16. Wai-Yin Poon & Hai-Bin Wang, 2010. "Bayesian Analysis of Multivariate Probit Models with Surrogate Outcome Data," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 498-520, September.
  17. Qin, Yongsong & Li, Ling & Lei, Qingzhu, 2009. "Empirical likelihood for linear regression models with missing responses," Statistics & Probability Letters, Elsevier, vol. 79(11), pages 1391-1396, June.
  18. Xue, Liu-Gen & Zhu, Lixing, 2006. "Empirical likelihood for single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1295-1312, July.
  19. Wang, Qihua & Tong, Xingwei & Sun, Liuquan, 2012. "Exploring the varying covariate effects in proportional odds models with censored data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 168-189.
  20. Wei Yu & Cuizhen Niu & Wangli Xu, 2014. "An empirical likelihood inference for the coefficient difference of a two-sample linear model with missing response data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(5), pages 675-693, July.
  21. Liugen Xue, 2009. "Empirical Likelihood Confidence Intervals for Response Mean with Data Missing at Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 671-685, December.
  22. Xue, Liugen, 2009. "Empirical likelihood for linear models with missing responses," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1353-1366, August.
  23. Qin, Yongsong & Rao, J.N.K. & Ren, Qunshu, 2008. "Confidence intervals for marginal parameters under fractional linear regression imputation for missing data," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1232-1259, July.
  24. Xuemei Hu & Xiaohui Liu, 2013. "Empirical likelihood confidence regions for semi-varying coefficient models with linear process errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(1), pages 161-180, March.
  25. Wang, Qihua & Su, Miaomiao & Wang, Ruoyu, 2021. "A beyond multiple robust approach for missing response problem," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
  26. Jing Cheng & Dylan S. Small, 2021. "Semiparametric models and inference for the effect of a treatment when the outcome is nonnegative with clumping at zero," Biometrics, The International Biometric Society, vol. 77(4), pages 1187-1201, December.
  27. Vexler, Albert & Gurevich, Gregory, 2010. "Empirical likelihood ratios applied to goodness-of-fit tests based on sample entropy," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 531-545, February.
  28. Zhao, Hui & Zhao, Pu-Ying & Tang, Nian-Sheng, 2013. "Empirical likelihood inference for mean functionals with nonignorably missing response data," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 101-116.
  29. Gengsheng Qin & Xiao-Hua Zhou, 2006. "Empirical Likelihood Inference for the Area under the ROC Curve," Biometrics, The International Biometric Society, vol. 62(2), pages 613-622, June.
  30. Biswas, Atanu & Rao, J.N.K., 2004. "Missing responses in adaptive allocation design," Statistics & Probability Letters, Elsevier, vol. 70(1), pages 59-70, October.
  31. Yongcheng Qi, 2010. "On the tail index of a heavy tailed distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(2), pages 277-298, April.
  32. Wang, Qihua & Härdle, Wolfgang & Linton, Oliver, 2002. "Semiparametric regression analysis under imputation for missing response data," SFB 373 Discussion Papers 2002,6, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  33. Liang, Hua & Su, Haiyan & Zou, Guohua, 2008. "Confidence intervals for a common mean with missing data with applications in an AIDS study," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 546-553, December.
  34. Wei, Yuting & Wang, Qihua & Duan, Xiaogang & Qin, Jing, 2021. "Bias-corrected Kullback–Leibler distance criterion based model selection with covariables missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
  35. Zheng, Ming & Yu, Wen, 2011. "An empirical likelihood approach to data analysis under two-stage sampling designs," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 947-956, August.
  36. Guo, Donglin & Xue, Liugen & Hu, Yuqin, 2017. "Covariate-balancing-propensity-score-based inference for linear models with missing responses," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 139-145.
  37. Chen, Xia & Cui, Hengjian, 2008. "Empirical likelihood inference for partial linear models under martingale difference sequence," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2895-2901, December.
  38. M. Rueda & J. Muñoz & Y. Berger & A. Arcos & S. Martínez, 2007. "Pseudo empirical likelihood method in the presence of missing data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 65(3), pages 349-367, May.
  39. Xue, Liugen & Xue, Dong, 2011. "Empirical likelihood for semiparametric regression model with missing response data," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 723-740, April.
  40. Yang, Yiping & Li, Gaorong & Peng, Heng, 2014. "Empirical likelihood of varying coefficient errors-in-variables models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 1-18.
  41. Zhao, Yichuan & Chen, Feiming, 2008. "Empirical likelihood inference for censored median regression model via nonparametric kernel estimation," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 215-231, February.
  42. Lu, Xuewen, 2009. "Empirical likelihood for heteroscedastic partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 387-396, March.
  43. Chuanhua Wei & Qihua Wang, 2012. "Statistical inference on restricted partially linear additive errors-in-variables models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 757-774, December.
  44. Yichuan Zhao & Song Yang, 2008. "Empirical likelihood inference for censored median regression with weighted empirical hazard functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 441-457, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.