IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Exploring the varying covariate effects in proportional odds models with censored data

  • Wang, Qihua
  • Tong, Xingwei
  • Sun, Liuquan
Registered author(s):

    In this article, we consider a proportional odds model, which allows one to examine the extent to which covariates interact nonlinearly with an exposure variable for analysis of right-censored data. A local maximum likelihood approach is presented to estimate nonlinear interactions (the coefficient functions) and the baseline function. The proposed estimators are shown to be consistent and asymptotically normal with the asymptotic variance estimated consistently. Also, we develop local profile likelihood ratio method to construct confidence region of coefficient functions. Simulation studies are conducted to evaluate the performances of the proposed estimators, and compare the normal approximation based confidence regions and local profile likelihood ratio based confidence regions. The method is illustrated with Stanford heart transplant data.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12000541
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 109 (2012)
    Issue (Month): C ()
    Pages: 168-189

    as
    in new window

    Handle: RePEc:eee:jmvana:v:109:y:2012:i:c:p:168-189
    DOI: 10.1016/j.jmva.2012.02.013
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Lu Tian & David Zucker & L.J. Wei, 2005. "On the Cox Model With Time-Varying Regression Coefficients," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 172-183, March.
    2. Qihua Wang, 2002. "Empirical likelihood-based inference in linear errors-in-covariables models with validation data," Biometrika, Biometrika Trust, vol. 89(2), pages 345-358, June.
    3. Zeng, Donglin & Lin, D.Y. & Yin, Guosheng, 2005. "Maximum Likelihood Estimation for the Proportional Odds Model With Random Effects," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 470-483, June.
    4. Kani Chen, 2002. "Semiparametric analysis of transformation models with censored data," Biometrika, Biometrika Trust, vol. 89(3), pages 659-668, August.
    5. Donglin Zeng & D. Y. Lin, 2006. "Efficient estimation of semiparametric transformation models for counting processes," Biometrika, Biometrika Trust, vol. 93(3), pages 627-640, September.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:109:y:2012:i:c:p:168-189. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.