IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v97y2006i6p1295-1312.html

Empirical likelihood for single-index models

Author

Listed:
  • Xue, Liu-Gen
  • Zhu, Lixing

Abstract

The empirical likelihood method is especially useful for constructing confidence intervals or regions of the parameter of interest. This method has been extensively applied to linear regression and generalized linear regression models. In this paper, the empirical likelihood method for single-index regression models is studied. An estimated empirical log-likelihood approach to construct the confidence region of the regression parameter is developed. An adjusted empirical log-likelihood ratio is proved to be asymptotically standard chi-square. A simulation study indicates that compared with a normal approximation-based approach, the proposed method described herein works better in terms of coverage probabilities and areas (lengths) of confidence regions (intervals).

Suggested Citation

  • Xue, Liu-Gen & Zhu, Lixing, 2006. "Empirical likelihood for single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1295-1312, July.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:6:p:1295-1312
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00155-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Qi-Hua Wang & Bing-Yi Jing, 2001. "Empirical Likelihood for a Class of Functionals of Survival Distribution with Censored Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 517-527, September.
    2. Qin, Gengsheng & Jing, Bing-Yi, 2001. "Censored Partial Linear Models and Empirical Likelihood," Journal of Multivariate Analysis, Elsevier, vol. 78(1), pages 37-61, July.
    3. Shi, Jian & Lau, Tai-Shing, 2000. "Empirical Likelihood for Partially Linear Models," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 132-148, January.
    4. Chen, S. X., 1994. "Empirical Likelihood Confidence Intervals for Linear Regression Coefficients," Journal of Multivariate Analysis, Elsevier, vol. 49(1), pages 24-40, April.
    5. Qihua Wang & J. N. K. Rao, 2002. "Empirical Likelihood‐based Inference in Linear Models with Missing Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 563-576, September.
    6. Qihua Wang, 2002. "Empirical likelihood-based inference in linear errors-in-covariables models with validation data," Biometrika, Biometrika Trust, vol. 89(2), pages 345-358, June.
    7. Hardle, Wolfgang & Tsybakov, A. B., 1993. "How sensitive are average derivatives?," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 31-48, July.
    8. Stoker, Thomas M, 1986. "Consistent Estimation of Scaled Coefficients," Econometrica, Econometric Society, vol. 54(6), pages 1461-1481, November.
    9. Song Chen, 1993. "On the accuracy of empirical likelihood confidence regions for linear regression model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(4), pages 621-637, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xia & Cui, Hengjian, 2008. "Empirical likelihood inference for partial linear models under martingale difference sequence," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2895-2901, December.
    2. Zhao, Yichuan & Chen, Feiming, 2008. "Empirical likelihood inference for censored median regression model via nonparametric kernel estimation," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 215-231, February.
    3. Liang, Hua & Su, Haiyan & Zou, Guohua, 2008. "Confidence intervals for a common mean with missing data with applications in an AIDS study," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 546-553, December.
    4. Yongcheng Qi, 2010. "On the tail index of a heavy tailed distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(2), pages 277-298, April.
    5. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2013. "Testing the linear errors-in-variables model with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 875-884.
    6. Qin, Yongsong & Li, Ling & Lei, Qingzhu, 2009. "Empirical likelihood for linear regression models with missing responses," Statistics & Probability Letters, Elsevier, vol. 79(11), pages 1391-1396, June.
    7. Guo-Liang Fan & Han-Ying Liang & Jiang-Feng Wang, 2013. "Empirical likelihood for heteroscedastic partially linear errors-in-variables model with α-mixing errors," Statistical Papers, Springer, vol. 54(1), pages 85-112, February.
    8. Hu, Xuemei & Wang, Zhizhong & Zhao, Zhiwei, 2009. "Empirical likelihood for semiparametric varying-coefficient partially linear errors-in-variables models," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1044-1052, April.
    9. Ruidong Han & Xinghui Wang & Shuhe Hu, 2018. "Asymptotics of the weighted least squares estimation for AR(1) processes with applications to confidence intervals," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 479-490, August.
    10. Jianglin Fang & Wanrong Liu & Xuewen Lu, 2018. "Empirical likelihood for heteroscedastic partially linear single-index models with growing dimensional data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 255-281, April.
    11. Xuemin Zi & Changliang Zou & Yukun Liu, 2012. "Two-sample empirical likelihood method for difference between coefficients in linear regression model," Statistical Papers, Springer, vol. 53(1), pages 83-93, February.
    12. Gengsheng Qin & Xiao-Hua Zhou, 2006. "Empirical Likelihood Inference for the Area under the ROC Curve," Biometrics, The International Biometric Society, vol. 62(2), pages 613-622, June.
    13. Wei Yu & Cuizhen Niu & Wangli Xu, 2014. "An empirical likelihood inference for the coefficient difference of a two-sample linear model with missing response data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(5), pages 675-693, July.
    14. Francesco Bravo, "undated". "Empirical likelihood specification testing in linear regression models," Discussion Papers 00/28, Department of Economics, University of York.
    15. Vexler, Albert & Gurevich, Gregory, 2010. "Empirical likelihood ratios applied to goodness-of-fit tests based on sample entropy," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 531-545, February.
    16. Wen Yu & Yunting Sun & Ming Zheng, 2011. "Empirical likelihood method for linear transformation models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 331-346, April.
    17. Liugen Xue, 2009. "Empirical Likelihood Confidence Intervals for Response Mean with Data Missing at Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 671-685, December.
    18. Yang, Yiping & Li, Gaorong & Peng, Heng, 2014. "Empirical likelihood of varying coefficient errors-in-variables models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 1-18.
    19. Xue, Liugen & Xue, Dong, 2011. "Empirical likelihood for semiparametric regression model with missing response data," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 723-740, April.
    20. Wang, Qihua & Lai, Peng, 2011. "Empirical likelihood calibration estimation for the median treatment difference in observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1596-1609, April.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:6:p:1295-1312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.