IDEAS home Printed from https://ideas.repec.org/r/arx/papers/1908.01602.html
   My bibliography  Save this item

Solving high-dimensional optimal stopping problems using deep learning

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yan Liu & Xiong Zhang, 2023. "Option Pricing Using LSTM: A Perspective of Realized Skewness," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
  2. Lukas Gonon, 2022. "Deep neural network expressivity for optimal stopping problems," Papers 2210.10443, arXiv.org.
  3. Ludovic Goudenège & Andrea Molent & Antonino Zanette, 2025. "Computing XVA for American basket derivatives by machine learning techniques," Computational Management Science, Springer, vol. 22(2), pages 1-33, December.
  4. Lukas Gonon, 2024. "Deep neural network expressivity for optimal stopping problems," Finance and Stochastics, Springer, vol. 28(3), pages 865-910, July.
  5. Noufel Frikha & Libo Li & Daniel Chee, 2025. "An Entropy Regularized BSDE Approach to Bermudan Options and Games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-05265653, HAL.
  6. Jasper Rou, 2025. "Time Deep Gradient Flow Method for pricing American options," Papers 2507.17606, arXiv.org.
  7. Philipp Grohs & Arnulf Jentzen & Diyora Salimova, 2022. "Deep neural network approximations for solutions of PDEs based on Monte Carlo algorithms," Partial Differential Equations and Applications, Springer, vol. 3(4), pages 1-41, August.
  8. Yuchao Dong, 2022. "Randomized Optimal Stopping Problem in Continuous time and Reinforcement Learning Algorithm," Papers 2208.02409, arXiv.org, revised Sep 2023.
  9. Vikranth Lokeshwar Dhandapani & Shashi Jain, 2024. "Optimizing Neural Networks for Bermudan Option Pricing: Convergence Acceleration, Future Exposure Evaluation and Interpolation in Counterparty Credit Risk," Papers 2402.15936, arXiv.org.
  10. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen, 2020. "Pricing and Hedging American-Style Options with Deep Learning," JRFM, MDPI, vol. 13(7), pages 1-12, July.
  11. Christian Bayer & Denis Belomestny & Paul Hager & Paolo Pigato & John Schoenmakers, 2020. "Randomized optimal stopping algorithms and their convergence analysis," Papers 2002.00816, arXiv.org.
  12. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
  13. Roberto Daluiso & Emanuele Nastasi & Andrea Pallavicini & Giulio Sartorelli, 2020. "Pricing commodity swing options," Papers 2001.08906, arXiv.org.
  14. Xuwei Yang & Anastasis Kratsios & Florian Krach & Matheus Grasselli & Aurelien Lucchi, 2023. "Regret-Optimal Federated Transfer Learning for Kernel Regression with Applications in American Option Pricing," Papers 2309.04557, arXiv.org, revised Oct 2024.
  15. Junyan Ye & Hoi Ying Wong & Kyunghyun Park, 2025. "Robust Exploratory Stopping under Ambiguity in Reinforcement Learning," Papers 2510.10260, arXiv.org.
  16. Christian Beck & Lukas Gonon & Arnulf Jentzen, 2024. "Overcoming the curse of dimensionality in the numerical approximation of high-dimensional semilinear elliptic partial differential equations," Partial Differential Equations and Applications, Springer, vol. 5(6), pages 1-47, December.
  17. Ludovic Goudenege & Andrea Molent & Antonino Zanette, 2022. "Computing XVA for American basket derivatives by Machine Learning techniques," Papers 2209.06485, arXiv.org.
  18. Erhan Bayraktar & Qi Feng & Zhaoyu Zhang, 2022. "Deep Signature Algorithm for Multi-dimensional Path-Dependent Options," Papers 2211.11691, arXiv.org, revised Jan 2024.
  19. Nader Karimi & Erfan Salavati & Hirbod Assa & Hojatollah Adibi, 2023. "Sensitivity Analysis of Optimal Commodity Decision Making with Neural Networks: A Case for COVID-19," Mathematics, MDPI, vol. 11(5), pages 1-15, February.
  20. Laurens Van Mieghem & Antonis Papapantoleon & Jonas Papazoglou-Hennig, 2023. "Machine learning for option pricing: an empirical investigation of network architectures," Papers 2307.07657, arXiv.org.
  21. Riccardo Aiolfi & Nicola Moreni & Marco Bianchetti & Marco Scaringi, 2024. "Learning Bermudans," Computational Economics, Springer;Society for Computational Economics, vol. 64(5), pages 2813-2852, November.
    • Riccardo Aiolfi & Nicola Moreni & Marco Bianchetti & Marco Scaringi & Filippo Fogliani, 2021. "Learning Bermudans," Papers 2105.00655, arXiv.org.
  22. Min Dai & Yu Sun & Zuo Quan Xu & Xun Yu Zhou, 2024. "Learning to Optimally Stop Diffusion Processes, with Financial Applications," Papers 2408.09242, arXiv.org, revised Aug 2025.
  23. Beatriz Salvador & Cornelis W. Oosterlee & Remco van der Meer, 2020. "Financial Option Valuation by Unsupervised Learning with Artificial Neural Networks," Mathematics, MDPI, vol. 9(1), pages 1-20, December.
  24. Kentaro Hoshisashi & Yuji Yamada, 2023. "Pricing Multi-Asset Bermudan Commodity Options with Stochastic Volatility Using Neural Networks," JRFM, MDPI, vol. 16(3), pages 1-23, March.
  25. Bernard Lapeyre & Jérôme Lelong, 2021. "Neural network regression for Bermudan option pricing," Post-Print hal-02183587, HAL.
  26. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Neural Optimal Stopping Boundary," Papers 2205.04595, arXiv.org, revised May 2023.
  27. Jiefei Yang & Guanglian Li, 2024. "A deep primal-dual BSDE method for optimal stopping problems," Papers 2409.06937, arXiv.org.
  28. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2023. "Deep stochastic optimization in finance," Digital Finance, Springer, vol. 5(1), pages 91-111, March.
  29. Mike Ludkovski, 2020. "mlOSP: Towards a Unified Implementation of Regression Monte Carlo Algorithms," Papers 2012.00729, arXiv.org, revised Oct 2022.
  30. Yun Zhao & Harry Zheng, 2025. "Neural Network Convergence for Variational Inequalities," Papers 2509.26535, arXiv.org, revised Oct 2025.
  31. Beatrice Acciaio & Anastasis Kratsios & Gudmund Pammer, 2022. "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer," Papers 2201.13094, arXiv.org, revised Mar 2023.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.