IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb373/200188.html
   My bibliography  Save this paper

Weak approximation of stochastic differential delay equations

Author

Listed:
  • Buckwar, Evelyn
  • Shardlow, Tony

Abstract

A numerical method for a class of Itô stochastic differential equations with a finite delay term is introduced. The method is based on the forward Euler approximation and is parameterised by its time step. Weak convergence with respect to a class of smooth test functionals is established by using the infinite dimensional version of the Kolmogorov equation. With regularity assumptions on coefficients and initial data, the rate of convergence is shown to be proportional to the time step. Some computations are presented to demonstrate the rate of convergence.

Suggested Citation

  • Buckwar, Evelyn & Shardlow, Tony, 2001. "Weak approximation of stochastic differential delay equations," SFB 373 Discussion Papers 2001,88, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:200188
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/62718/1/725952385.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Küchler, Uwe & Platen, Eckhard, 2000. "Strong discrete time approximation of stochastic differential equations with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 54(1), pages 189-205.
    2. David G. Hobson & L. C. G. Rogers, 1998. "Complete Models with Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 27-48, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    2. Gushchin, Alexander A. & Küchler, Uwe, 2004. "On oscillations of the geometric Brownian motion with time-delayed drift," Statistics & Probability Letters, Elsevier, vol. 70(1), pages 19-24, October.
    3. Sekine, Jun, 2008. "Marginal distribution of some path-dependent stochastic volatility model," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1846-1850, September.
    4. L. Lin & M. Schatz & D. Sornette, 2019. "A simple mechanism for financial bubbles: time-varying momentum horizon," Quantitative Finance, Taylor & Francis Journals, vol. 19(6), pages 937-959, June.
    5. Yang Wang & Xiao Xu & Jizhou Zhang, 2021. "Optimal Investment Strategy for DC Pension Plan with Stochastic Income and Inflation Risk under the Ornstein–Uhlenbeck Model," Mathematics, MDPI, vol. 9(15), pages 1-15, July.
    6. Andrea Pascucci & Marco Di Francesco, 2005. "On the complete model with stochastic volatility by Hobson and Rogers," Finance 0503013, University Library of Munich, Germany.
    7. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    8. F. Fornari & A. Mele, 1998. "ARCH Models and Option Pricing : The Continuous Time Connection," THEMA Working Papers 98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    9. Uwe Küchler & Michael Sørensen, 2010. "A simple estimator for discrete-time samples from affine stochastic delay differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 13(2), pages 125-132, June.
    10. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011.
    11. Tak Siu, 2006. "Option Pricing Under Autoregressive Random Variance Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 62-75.
    12. Zheng, Xiaoxiao & Zhou, Jieming & Sun, Zhongyang, 2016. "Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 77-87.
    13. Emilio Barucci & Paul Malliavin & Maria Elvira Mancino & Roberto Renò & Anton Thalmaier, 2003. "The Price‐Volatility Feedback Rate: An Implementable Mathematical Indicator of Market Stability," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 17-35, January.
    14. Andrea Pascucci & Paolo Foschi, 2005. "Calibration of the Hobson&Rogers model: empirical tests," Finance 0509020, University Library of Munich, Germany.
    15. Darsinos, T. & Satchell, S.E., 2001. "Bayesian Forecasting of Options Prices: A Natural Framework for Pooling Historical and Implied Volatiltiy Information," Cambridge Working Papers in Economics 0116, Faculty of Economics, University of Cambridge.
    16. Huang, Wei & Goto, Satoru & Nakamura, Masatoshi, 2004. "Decision-making for stock trading based on trading probability by considering whole market movement," European Journal of Operational Research, Elsevier, vol. 157(1), pages 227-241, August.
    17. Küchler, Uwe & Platen, Eckhard, 2002. "Weak discrete time approximation of stochastic differential equations with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(6), pages 497-507.
    18. Yuan, Chenggui & Mao, Xuerong, 2004. "Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 223-235.
    19. Alexander Lipton, 2024. "Hydrodynamics of Markets:Hidden Links Between Physics and Finance," Papers 2403.09761, arXiv.org.
    20. Hu, Rong, 2020. "Almost sure exponential stability of the Milstein-type schemes for stochastic delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:200188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.