IDEAS home Printed from
   My bibliography  Save this article

On oscillations of the geometric Brownian motion with time-delayed drift


  • Gushchin, Alexander A.
  • Küchler, Uwe


The geometric Brownian motion is the solution of a linear stochastic differential equation in the Itô sense. If one adds to the drift term a possible nonlinear time-delayed term and starts with a non-negative initial process then the process generated in this way, may hit zero and may oscillate around zero infinitely many times depending on properties of both the drift terms and the diffusion constant.

Suggested Citation

  • Gushchin, Alexander A. & Küchler, Uwe, 2004. "On oscillations of the geometric Brownian motion with time-delayed drift," Statistics & Probability Letters, Elsevier, vol. 70(1), pages 19-24, October.
  • Handle: RePEc:eee:stapro:v:70:y:2004:i:1:p:19-24

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. David G. Hobson & L. C. G. Rogers, 1998. "Complete Models with Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 27-48.
    2. Appleby, John A. D. & Buckwar, Evelyn, 2003. "Noise Induced Oscillation in Solutions of Stochastic Delay Differential Equations," SFB 373 Discussion Papers 2003,9, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:70:y:2004:i:1:p:19-24. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.