IDEAS home Printed from https://ideas.repec.org/p/zbw/kitiip/17.html
   My bibliography  Save this paper

Metaheuristics for online drive train efficiency optimization in electric vehicles

Author

Listed:
  • Apitzsch, Tilman
  • Klöffer, Christian
  • Jochem, Patrick
  • Doppelbauer, Martin
  • Fichtner, Wolf

Abstract

Utilization of electric vehicles provides a solution to several challenges in today’s individual mobility. However, ensuring maximum efficient operation of electric vehicles is required in order to overcome their greatest weakness: the limited range. Even though the overall efficiency is already high, incorporating DC/DC converter into the electric drivetrain improves the efficiency level further. This inclusion enables the dynamic optimization of the intermediate voltage level subject to the current driving demand (operating point) of the drivetrain. Moreover, the overall drivetrain efficiency depends on the setup of other drivetrain components’ electric parameters. Solving this complex problem for different drivetrain parameter setups subject to the current driving demand needs considerable computing time for conventional solvers and cannot be delivered in real-time. Therefore, basic metaheuristics are identified and applied in order to assure the optimization process during driving. In order to compare the performance of metaheuristics for this task, we adjust and compare the performance of different basic metaheuristics (i.e. Monte-Carlo, Evolutionary Algorithms, Simulated Annealing and Particle Swarm Optimization). The results are statistically analyzed and based on a developed simulation model of an electric drivetrain. By applying the bestperforming metaheuristic, the efficiency of the drivetrain could be improved by up to 30% compared to an electric vehicle without the DC/DC- converter. The difference between computing times vary between 30 minutes (for the Exhaustive Search Algorithm) to about 0.2 seconds (Particle Swarm) per operating point. It is shown, that the Particle Swarm Optimization as well as the Evolutionary Algorithm procedures are the best-performing methods on this optimization problem. All in all, the results support the idea that online efficiency optimization in electric vehicles is possible with regard to computing time and success probability.

Suggested Citation

  • Apitzsch, Tilman & Klöffer, Christian & Jochem, Patrick & Doppelbauer, Martin & Fichtner, Wolf, 2016. "Metaheuristics for online drive train efficiency optimization in electric vehicles," Working Paper Series in Production and Energy 17, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
  • Handle: RePEc:zbw:kitiip:17
    DOI: 10.5445/IR/1000063608
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/176743/1/kit-iip-wp-17.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.5445/IR/1000063608?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Song, Ziyou & Li, Jianqiu & Han, Xuebing & Xu, Liangfei & Lu, Languang & Ouyang, Minggao & Hofmann, Heath, 2014. "Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 135(C), pages 212-224.
    2. Jochem, Patrick & Babrowski, Sonja & Fichtner, Wolf, 2015. "Assessing CO2 emissions of electric vehicles in Germany in 2030," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 68-83.
    3. Trovão, João P. & Pereirinha, Paulo G. & Jorge, Humberto M. & Antunes, Carlos Henggeler, 2013. "A multi-level energy management system for multi-source electric vehicles – An integrated rule-based meta-heuristic approach," Applied Energy, Elsevier, vol. 105(C), pages 304-318.
    4. Jochem, Patrick & Schönfelder, Martin & Fichtner, Wolf, 2015. "An efficient two-stage algorithm for decentralized scheduling of micro-CHP units," European Journal of Operational Research, Elsevier, vol. 245(3), pages 862-874.
    5. Zou, Yuan & Liu, Teng & Liu, Dexing & Sun, Fengchun, 2016. "Reinforcement learning-based real-time energy management for a hybrid tracked vehicle," Applied Energy, Elsevier, vol. 171(C), pages 372-382.
    6. Xi, Jiaqi & Li, Mian & Xu, Min, 2014. "Optimal energy management strategy for battery powered electric vehicles," Applied Energy, Elsevier, vol. 134(C), pages 332-341.
    7. Chen, Zheng & Xia, Bing & You, Chenwen & Mi, Chunting Chris, 2015. "A novel energy management method for series plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 145(C), pages 172-179.
    8. Shabbir, Wassif & Evangelou, Simos A., 2014. "Real-time control strategy to maximize hybrid electric vehicle powertrain efficiency," Applied Energy, Elsevier, vol. 135(C), pages 512-522.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Rui & Cao, Jiayi & Yu, Quanqing, 2018. "Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 211(C), pages 538-548.
    2. Wang, Bin & Xu, Jun & Cao, Binggang & Ning, Bo, 2017. "Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 596-608.
    3. Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Jiajun Liu & Tianxu Jin & Li Liu & Yajue Chen & Kun Yuan, 2017. "Multi-Objective Optimization of a Hybrid ESS Based on Optimal Energy Management Strategy for LHDs," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    5. Wu, Yuankai & Tan, Huachun & Peng, Jiankun & Zhang, Hailong & He, Hongwen, 2019. "Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 247(C), pages 454-466.
    6. Seddig, Katrin & Jochem, Patrick & Fichtner, Wolf, 2017. "Integrating renewable energy sources by electric vehicle fleets under uncertainty," Energy, Elsevier, vol. 141(C), pages 2145-2153.
    7. Liu, Yonggang & Liu, Junjun & Zhang, Yuanjian & Wu, Yitao & Chen, Zheng & Ye, Ming, 2020. "Rule learning based energy management strategy of fuel cell hybrid vehicles considering multi-objective optimization," Energy, Elsevier, vol. 207(C).
    8. Feroldi, Diego & Carignano, Mauro, 2016. "Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles," Applied Energy, Elsevier, vol. 183(C), pages 645-658.
    9. Kong, Yan & Xu, Nan & Liu, Qiao & Sui, Yan & Yue, Fenglai, 2023. "A data-driven energy management method for parallel PHEVs based on action dependent heuristic dynamic programming (ADHDP) model," Energy, Elsevier, vol. 265(C).
    10. Jiajun Liu & Huachao Dong & Tianxu Jin & Li Liu & Babak Manouchehrinia & Zuomin Dong, 2018. "Optimization of Hybrid Energy Storage Systems for Vehicles with Dynamic On-Off Power Loads Using a Nested Formulation," Energies, MDPI, vol. 11(10), pages 1-25, October.
    11. Ruan, Jiageng & Song, Qiang & Yang, Weiwei, 2019. "The application of hybrid energy storage system with electrified continuously variable transmission in battery electric vehicle," Energy, Elsevier, vol. 183(C), pages 315-330.
    12. Cong Zhang & Dai Wang & Bin Wang & Fan Tong, 2020. "Battery Degradation Minimization-Oriented Hybrid Energy Storage System for Electric Vehicles," Energies, MDPI, vol. 13(1), pages 1-21, January.
    13. Zhuang, Weichao & Zhang, Xiaowu & Ding, Yang & Wang, Liangmo & Hu, Xiaosong, 2016. "Comparison of multi-mode hybrid powertrains with multiple planetary gears," Applied Energy, Elsevier, vol. 178(C), pages 624-632.
    14. Zhuang, Weichao & Ye, Jianwei & Song, Ziyou & Yin, Guodong & Li, Guangmin, 2020. "Comparison of semi-active hybrid battery system configurations for electric taxis application," Applied Energy, Elsevier, vol. 259(C).
    15. Herrera, Victor & Milo, Aitor & Gaztañaga, Haizea & Etxeberria-Otadui, Ion & Villarreal, Igor & Camblong, Haritza, 2016. "Adaptive energy management strategy and optimal sizing applied on a battery-supercapacitor based tramway," Applied Energy, Elsevier, vol. 169(C), pages 831-845.
    16. Tengda Hu & Yunwu Li & Zhi Zhang & Ying Zhao & Dexiong Liu, 2021. "Energy Management Strategy of Hybrid Energy Storage System Based on Road Slope Information," Energies, MDPI, vol. 14(9), pages 1-18, April.
    17. Sadam Hussain & Muhammad Umair Ali & Gwan-Soo Park & Sarvar Hussain Nengroo & Muhammad Adil Khan & Hee-Je Kim, 2019. "A Real-Time Bi-Adaptive Controller-Based Energy Management System for Battery–Supercapacitor Hybrid Electric Vehicles," Energies, MDPI, vol. 12(24), pages 1-24, December.
    18. Cai, Y. & Yang, F. & Ouyang, MG., 2016. "Impact of control strategy on battery degradation for a plug-in hybrid electric city bus in China," Energy, Elsevier, vol. 116(P1), pages 1020-1030.
    19. Zhang, Shuo & Xiong, Rui & Cao, Jiayi, 2016. "Battery durability and longevity based power management for plug-in hybrid electric vehicle with hybrid energy storage system," Applied Energy, Elsevier, vol. 179(C), pages 316-328.
    20. Tran, Dai-Duong & Vafaeipour, Majid & El Baghdadi, Mohamed & Barrero, Ricardo & Van Mierlo, Joeri & Hegazy, Omar, 2020. "Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:kitiip:17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://www.iip.kit.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.