IDEAS home Printed from https://ideas.repec.org/p/zbw/iwhdps/iwh-5-07.html
   My bibliography  Save this paper

Schätzunsicherheit oder Korrelation, Welche Risikokomponente sollten Unternehmen bei der Bewertung von Kreditportfoliorisiken wann berücksichtigen?

Author

Listed:
  • Dannenberg, Henry

Abstract

Die Bewertung der Ausfallwahrscheinlichkeiten von Ratingklassen, basierend auf historischen Daten, ist mit Schätzunsicherheit verbunden. Zur Bewertung dieser Unsicherheit werden in der Literatur Konfidenzintervalle diskutiert. Diesen liegen allerdings Annahmen bezüglich der Abhängigkeiten zwischen einzelnen Forderungen zugrunde, die im Widerspruch zu den Annahmen der gängigen Kreditportfoliomodelle stehen. Im vorliegenden Beitrag wird anhand von Simulationsstudien gezeigt, dass eine Berücksichtigung von Schätzunsicherheit in kleinen Portfolios gerechtfertigt sein kann, auch wenn dafür Abhängigkeiten vernachlässigt werden müssen. Die Modellierung der Schätzunsicherheit beruht hier auf der Idee der Konfidenzintervalle und der ihnen zugrundeliegenden Verteilungen. Die Ergebnisse der Arbeit sind vor allem für die Modellierung von Forderungsportfolios in Unternehmen von Interesse.

Suggested Citation

  • Dannenberg, Henry, 2007. "Schätzunsicherheit oder Korrelation, Welche Risikokomponente sollten Unternehmen bei der Bewertung von Kreditportfoliorisiken wann berücksichtigen?," IWH Discussion Papers 5/2007, Halle Institute for Economic Research (IWH).
  • Handle: RePEc:zbw:iwhdps:iwh-5-07
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/29957/1/531244547.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michel Dietsch, 2004. "Should SME exposures be treated as retail or corporate exposures: a comparative analysis of probabilities of default and assets correlations in French and German SMEs," ULB Institutional Repository 2013/14164, ULB -- Universite Libre de Bruxelles.
    2. Dietsch, Michel & Petey, Joel, 2004. "Should SME exposures be treated as retail or corporate exposures? A comparative analysis of default probabilities and asset correlations in French and German SMEs," Journal of Banking & Finance, Elsevier, vol. 28(4), pages 773-788, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Gornall & Ilya A. Strebulaev, 2013. "Financing as a Supply Chain: The Capital Structure of Banks and Borrowers," NBER Working Papers 19633, National Bureau of Economic Research, Inc.
    2. Koopman, Siem Jan & Lucas, André, 2008. "A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 510-525.
    3. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    4. Ongena, Steven & Tümer-Alkan, Günseli & Westernhagen, Natalja v., 2012. "Creditor concentration: An empirical investigation," European Economic Review, Elsevier, vol. 56(4), pages 830-847.
    5. Salvatore D. Tomarchio & Antonio Punzo, 2019. "Modelling the loss given default distribution via a family of zero‐and‐one inflated mixture models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1247-1266, October.
    6. Michel Dietsch, 2003. "De Bâle II vers Bâle III : les enjeux et les problèmes du nouvel Accord," Revue d'Économie Financière, Programme National Persée, vol. 73(4), pages 325-342.
    7. Rösch, Daniel & Scheule, Harald, 2009. "The Empirical Relation between Credit Quality, Recovery and Correlation," Hannover Economic Papers (HEP) dp-418, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    8. Filipe, Sara Ferreira & Grammatikos, Theoharry & Michala, Dimitra, 2016. "Forecasting distress in European SME portfolios," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 112-135.
    9. Tabak, Benjamin M. & Luduvice, André Victor D. & Cajueiro, Daniel O., 2011. "Modeling default probabilities: The case of Brazil," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(4), pages 513-534, October.
    10. Klaus Duellmann & Jonathan Küll & Michael Kunisch, 2010. "Estimating asset correlations from stock prices or default rates - which method is superior?," Post-Print hal-00736734, HAL.
    11. Paula Antão, 2009. "An Assessment of Capital Requirements under Basel II: The Portuguese Case," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    12. Tingqiang Chen & Suyang Wang, 2023. "Incomplete information model of credit default of micro and small enterprises," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2956-2974, July.
    13. Magdalena Pisa & Dennis Bams & Christian Wolff, 2012. "Modeling default correlation in a US retail loan portfolio," LSF Research Working Paper Series 12-19, Luxembourg School of Finance, University of Luxembourg.
    14. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Jing Yao, 2017. "How robust is the value-at-risk of credit risk portfolios?," The European Journal of Finance, Taylor & Francis Journals, vol. 23(6), pages 507-534, May.
    15. Loretta Mastroeni & Giuseppe D'Acquisto & Maurizio Naldi, 2014. "Evaluation of Credit Risk Under Correlated Defaults: The Cross-Entropy Simulation Approach," Departmental Working Papers of Economics - University 'Roma Tre' 0193, Department of Economics - University Roma Tre.
    16. Düllmann, Klaus & Kunisch, Michael & Küll, Jonathan, 2008. "Estimating asset correlations from stock prices or default rates: which method is superior?," Discussion Paper Series 2: Banking and Financial Studies 2008,04, Deutsche Bundesbank.
    17. World Bank, 2010. "Scaling-Up SME Access to Financial Services," World Bank Publications - Reports 12515, The World Bank Group.
    18. Bank for International Settlements, 2011. "Portfolio and risk management for central banks and sovereign wealth funds," BIS Papers, Bank for International Settlements, number 58.
    19. Brini, Alessio & Tedeschi, Gabriele & Tantari, Daniele, 2023. "Reinforcement learning policy recommendation for interbank network stability," Journal of Financial Stability, Elsevier, vol. 67(C).
    20. Chiara Pederzoli & Costanza Torricelli & Simona Castellani, 2010. "The Interaction of Financial Fragility and the Business Cycle in Determining Banks’ Loan Losses: An Investigation of the Italian Case," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 39(3), pages 129-146, November.

    More about this item

    Keywords

    probability of default; estimation uncertainty; risk assessment;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:iwhdps:iwh-5-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwhhhde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.