IDEAS home Printed from https://ideas.repec.org/p/zbw/hsgmed/202501.html
   My bibliography  Save this paper

Causal Effects and Optimal Policy Learning for Intensive Care Unit Discharge Decisions to Solve Hospital Process Bottlenecks: Approach, Methods, and First Results

Author

Listed:
  • Vogel, Justus
  • Cordier, Johannes
  • Filipovic, Miodrag

Abstract

Intensive care units (ICUs) operate with fixed capacities and face uncertainty such as demand variability, leading to demand-driven, early discharges to free up beds. These discharges can increase ICU readmission rates, negatively impacting patient outcomes and aggravating ICU bottleneck congestion. This study investigates how ICU discharge timing affects readmission risk, with the goal of developing policies that minimize ICU readmissions, managing demand variability and bed capacity. To define a binary treatment, we randomly assign hypothetical discharge days to patients, comparing these with actual discharge days to form intervention and control groups. We apply two causal machine learning techniques (generalized random forest, modified causal forest). Assuming unconfoundedness, we leverage observed patient data as sufficient covariates. For scenarios where unconfoundedness might fail, we discuss an IV approach with different instruments. We further develop decision policies based on individualized average treatment effects (IATEs) to minimize individual patients’ readmission risk. Our sample comprises 12,950 ICU stays (11,873 unique cases) from the Department of Surgical Intensive Medicine of the Cantonal Hospital of St. Gallen admitted between January 01, 2016, and December 31, 2023. We find that for 72% of our sample discharge at point in time š‘” as compared to š‘”+1 increases patients’ readmission risk. Vice versa, 28% of cases profit from an earlier discharge in terms of readmission risk. The range of IATEs is quite large: For 91.4% of ICU stays, an earlier ICU discharge changes a patient’s readmission risk between -0.05 and 0.05 percentage points (-55% and 55% relative change as compared to the average readmission rate of 9.04%). To develop decision policies, we will exploit this treatment heterogeneity and rank patients according to their IATEs and compare IATEs of optimal and actual discharges across all decision points in our observation period. Finally, we outline how we will assess the potential reduction in readmissions and saved bed capacities under optimal policies in a simulation, offering actionable insights for ICU management. We aim to provide a novel approach and blueprint for similar operations research and management science applications in data-rich environments.

Suggested Citation

  • Vogel, Justus & Cordier, Johannes & Filipovic, Miodrag, 2025. "Causal Effects and Optimal Policy Learning for Intensive Care Unit Discharge Decisions to Solve Hospital Process Bottlenecks: Approach, Methods, and First Results," Working Paper Series in Health Economics, Management and Policy 2025-01, University of St.Gallen, School of Medicine, Chair of Health Economics, Policy and Management, revised 2025.
  • Handle: RePEc:zbw:hsgmed:202501
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/308439.2/1/wps-2025-01_v2.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jie Bai & Andreas Fügener & Jochen Gönsch & Jens O. Brunner & Manfred Blobner, 2021. "Managing admission and discharge processes in intensive care units," Health Care Management Science, Springer, vol. 24(4), pages 666-685, December.
    2. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    3. Jay K. Satia & Roy E. Lave, 1973. "Markovian Decision Processes with Uncertain Transition Probabilities," Operations Research, INFORMS, vol. 21(3), pages 728-740, June.
    4. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    5. Yao Cui & Andrew M. Davis, 2022. "Tax-Induced Inequalities in the Sharing Economy," Management Science, INFORMS, vol. 68(10), pages 7202-7220, October.
    6. Jie Bai & Andreas Fügener & Jan Schoenfelder & Jens O. Brunner, 2018. "Operations research in intensive care unit management: a literature review," Health Care Management Science, Springer, vol. 21(1), pages 1-24, March.
    7. J. K. Satia & R. E. Lave, 1973. "Markovian Decision Processes with Probabilistic Observation of States," Management Science, INFORMS, vol. 20(1), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," Regional Science and Urban Economics, Elsevier, vol. 94(C).
    3. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    5. Carlos Fern'andez-Lor'ia & Foster Provost & Jesse Anderton & Benjamin Carterette & Praveen Chandar, 2020. "A Comparison of Methods for Treatment Assignment with an Application to Playlist Generation," Papers 2004.11532, arXiv.org, revised Apr 2022.
    6. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    7. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    8. Zhang, Han, 2021. "How Using Machine Learning Classification as a Variable in Regression Leads to Attenuation Bias and What to Do About It," SocArXiv 453jk, Center for Open Science.
    9. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    10. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    11. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
    12. Cockx, Bart & Lechner, Michael & Bollens, Joost, 2023. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Labour Economics, Elsevier, vol. 80(C).
    13. Daniel Boller & Michael Lechner & Gabriel Okasa, 2021. "The Effect of Sport in Online Dating: Evidence from Causal Machine Learning," Papers 2104.04601, arXiv.org.
    14. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
    15. Yamin Du & Huanhuan Cheng & Qing Liu & Song Tan, 2024. "The delayed and combinatorial response of online public opinion to the real world: An inquiry into news texts during the COVID-19 era," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-18, December.
    16. Aysegül Kayaoglu & Ghassan Baliki & Tilman Brück & Melodie Al Daccache & Dorothee Weiffen, 2023. "How to conduct impact evaluations in humanitarian and conflict settings," HiCN Working Papers 387, Households in Conflict Network.
    17. Zeynep Turgay & Fikri Karaesmen & Egemen Lerzan Ɩrmeci, 2018. "Structural properties of a class of robust inventory and queueing control problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(8), pages 699-716, December.
    18. Bas Bosma & Arjen Witteloostuijn, 2024. "Machine learning in international business," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 55(6), pages 676-702, August.
    19. Huber, Martin & Meier, Jonas & Wallimann, Hannes, 2022. "Business analytics meets artificial intelligence: Assessing the demand effects of discounts on Swiss train tickets," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 22-39.
    20. repec:osf:socarx:qzm7y_v1 is not listed on IDEAS
    21. Hazar Altınbaş & Vincenzo Pacelli & Edgardo Sica, 2022. "An Empirical Assessment of the Contagion Determinants in the Euro Area in a Period of Sovereign Debt Risk," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 8(2), pages 339-371, July.

    More about this item

    Keywords

    Causal Machine Learning; Intensive Care Unit Management; Hospital Operations; Policy Learning;
    All these keywords.

    JEL classification:

    • I10 - Health, Education, and Welfare - - Health - - - General
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hsgmed:202501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://med.unisg.ch/de/forschung/management-im-gesundheitswesen .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.