IDEAS home Printed from
   My bibliography  Save this paper

Convex Imprecise Previsions for Risk Measurement


  • Renato Pelessoni

    (University of Trieste)

  • Paolo Vicig

    (University of Trieste)


In this paper we introduce convex imprecise previsions as a special class of imprecise previsions, showing that they retain or generalise most of the relevant properties of coherent imprecise previsions but are not necessarily positively homogeneous. The broader class of weakly convex imprecise previsions is also studied and its fundamental properties are demonstrated. The notions of weak convexity and convexity are then applied to risk measurement, leading to a more general definition of convex risk measure than the one already known in risk measurement literature.

Suggested Citation

  • Renato Pelessoni & Paolo Vicig, 2003. "Convex Imprecise Previsions for Risk Measurement," Risk and Insurance 0309001, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpri:0309001
    Note: Type of Document - Pdf; prepared on MikTeX; pages: 23. A more complete and updated version has been published in Reliable Computing, vol. 9, issue 6, December 2003

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    2. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Giannopoulos, Kostas & Tunaru, Radu, 2005. "Coherent risk measures under filtered historical simulation," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 979-996, April.
    2. Nendel, Max, 2019. "On Nonlinear Expectations and Markov Chains under Model Uncertainty," Center for Mathematical Economics Working Papers 628, Center for Mathematical Economics, Bielefeld University.

    More about this item


    imprecise previsions; risk measures; weakly convex imprecise previsions; convex imprecise previsions;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpri:0309001. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.