IDEAS home Printed from https://ideas.repec.org/p/wop/safiwp/02-01-001.html
   My bibliography  Save this paper

Demand Storage, Market Liquidity, and Price Volatility

Author

Listed:
  • Marcus G. Daniels
  • J. Doyne Farmer
  • Giulia Iori
  • Eric Smith

Abstract

The limit order book is a device for storing demand and effecting trades that is the primary mechanism for price formation in most modern financial markets. We study the limit order book under a random process model of order flow, using simulations and an analytic treatment based on a master equation. We make testable predictions of the price diffusion rate, the depth of stored demand vs. price, the bid-ask spread, and the price impact. Our model provides an explanation for the empirically observed concave form of the price impact function.

Suggested Citation

  • Marcus G. Daniels & J. Doyne Farmer & Giulia Iori & Eric Smith, 2002. "Demand Storage, Market Liquidity, and Price Volatility," Working Papers 02-01-001, Santa Fe Institute.
  • Handle: RePEc:wop:safiwp:02-01-001
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.
    2. Challet, Damien & Stinchcombe, Robin, 2001. "Analyzing and modeling 1+1d markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 300(1), pages 285-299.
    3. Gode, Dhananjay K & Sunder, Shyam, 1993. "Allocative Efficiency of Markets with Zero-Intelligence Traders: Market as a Partial Substitute for Individual Rationality," Journal of Political Economy, University of Chicago Press, vol. 101(1), pages 119-137, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Smith & J Doyne Farmer & Laszlo Gillemot & Supriya Krishnamurthy, 2003. "Statistical theory of the continuous double auction," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 481-514.
    2. Wei-Xing Zhou & Guo-Hua Mu & Si-Wei Chen & Didier Sornette, "undated". "Strategies used as Spectroscopy of Financial Markets Reveal New Stylized Facts," Working Papers ETH-RC-11-005, ETH Zurich, Chair of Systems Design.
    3. Mark Paddrik & Roy Hayes & William Scherer & Peter Beling, 2017. "Effects of limit order book information level on market stability metrics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(2), pages 221-247, July.
    4. Gaël Giraud & Céline Rochon, 2010. "Transition to Equilibrium in International Trades," Documents de travail du Centre d'Economie de la Sorbonne 10012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    5. J. Doyne Farmer & John Geanakoplos, 2008. "The virtues and vices of equilibrium and the future of financial economics," Papers 0803.2996, arXiv.org.
    6. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    7. J. Doyne Farmer & Paolo Patelli & Ilija I. Zovko, 2003. "The Predictive Power of Zero Intelligence in Financial Markets," Papers cond-mat/0309233, arXiv.org, revised Feb 2004.
    8. Pastushkov, A., 2025. "Evolutionary and agent-based computational finance: The new paradigms for asset pricing," Journal of the New Economic Association, New Economic Association, vol. 66(1), pages 196-222.
    9. Schinckus, C., 2013. "Between complexity of modelling and modelling of complexity: An essay on econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3654-3665.
    10. Xinyang Li & Andreas Krause, 2011. "An evolutionary multi‐objective optimization of trading rules in call markets," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(1), pages 1-14, January.
    11. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    12. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, December.
    13. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    14. Cordoni, Francesco, 2025. "Multi-asset bubbles equilibrium price dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 75(PA).
    15. Bottazzi, Giulio & Dosi, Giovanni & Rebesco, Igor, 2005. "Institutional architectures and behavioral ecologies in the dynamics of financial markets," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 197-228, February.
    16. Juergen Huber & Martin Shubik & Shyam Sunder, 2008. "The Value of Fiat Money with an Outside Bank: An Experimental Game," Cowles Foundation Discussion Papers 1675, Cowles Foundation for Research in Economics, Yale University, revised Apr 2010.
    17. Berg, Joyce E. & Rietz, Thomas A., 2019. "Longshots, overconfidence and efficiency on the Iowa Electronic Market," International Journal of Forecasting, Elsevier, vol. 35(1), pages 271-287.
    18. Mirowski, Philip, 2007. "Markets come to bits: Evolution, computation and markomata in economic science," Journal of Economic Behavior & Organization, Elsevier, vol. 63(2), pages 209-242, June.
    19. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    20. LiCalzi, Marco & Pellizzari, Paolo, 2007. "Simple market protocols for efficient risk sharing," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3568-3590, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:02-01-001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/epstfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.