IDEAS home Printed from
   My bibliography  Save this paper

Preconditioned Conjugate Gradients in an Interior Point Method for Two-stage Stochastic Programming


  • J. Gondzio


We develop a variant of an interior point method for solving two-stage stochastic linear programming problems. The problems are solved in a deterministic equivalent form in which the first stage variables appear as dense columns. To avoid their degrading influence on the adjacency structure AA^T (and the Cholesky factor) an iterative method is applied to compute orthogonal projections. Conjugate gradient algorithm with a structure-exploiting preconditioner is used. The method has been applied to solve real--life stochastic optimization problems. Preliminary computational results show the feasibility of the approach for problems with up to 80 independent scenarios (a deterministic equivalent linear program has 14001 constraints and 63690 variables).

Suggested Citation

  • J. Gondzio, 1994. "Preconditioned Conjugate Gradients in an Interior Point Method for Two-stage Stochastic Programming," Working Papers wp94130, International Institute for Applied Systems Analysis.
  • Handle: RePEc:wop:iasawp:wp94130

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. John R. Birge & Liqun Qi, 1988. "Computing Block-Angular Karmarkar Projections with Applications to Stochastic Programming," Management Science, INFORMS, vol. 34(12), pages 1472-1479, December.
    2. John R. Birge, 1985. "Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs," Operations Research, INFORMS, vol. 33(5), pages 989-1007, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Meszaros, Csaba, 1997. "The augmented system variant of IPMs in two-stage stochastic linear programming computation," European Journal of Operational Research, Elsevier, vol. 101(2), pages 317-327, September.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:iasawp:wp94130. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.