IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v34y1988i12p1472-1479.html
   My bibliography  Save this article

Computing Block-Angular Karmarkar Projections with Applications to Stochastic Programming

Author

Listed:
  • John R. Birge

    (Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109)

  • Liqun Qi

    (Department of Industrial Engineering, University of Wisconsin, Madison, Wisconsin 53706)

Abstract

We present a variant of Karmarkar's algorithm for block-angular structured linear programs, such as stochastic linear programs. By computing the projection efficiently, we give a worst-case bound on the order of the running time that can be an order of magnitude better than that of Karmarkar's standard algorithm. Further implications for approximations and very large-scale problems are given.

Suggested Citation

  • John R. Birge & Liqun Qi, 1988. "Computing Block-Angular Karmarkar Projections with Applications to Stochastic Programming," Management Science, INFORMS, vol. 34(12), pages 1472-1479, December.
  • Handle: RePEc:inm:ormnsc:v:34:y:1988:i:12:p:1472-1479
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.34.12.1472
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kouwenberg, Roy, 2001. "Scenario generation and stochastic programming models for asset liability management," European Journal of Operational Research, Elsevier, vol. 134(2), pages 279-292, October.
    2. Vladimirou, Hercules, 1998. "Computational assessment of distributed decomposition methods for stochastic linear programs," European Journal of Operational Research, Elsevier, vol. 108(3), pages 653-670, August.
    3. Gondzio, Jacek, 2012. "Interior point methods 25 years later," European Journal of Operational Research, Elsevier, vol. 218(3), pages 587-601.
    4. Zhang, S., 2002. "An interior-point and decomposition approach to multiple stage stochastic programming," Econometric Institute Research Papers EI 2002-35, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Gondzio, J. & Sarkissian, R. & Vial, J.-P., 1997. "Using an interior point method for the master problem in a decomposition approach," European Journal of Operational Research, Elsevier, vol. 101(3), pages 577-587, September.
    6. Mulvey, John M. & Rosenbaum, Daniel P. & Shetty, Bala, 1997. "Strategic financial risk management and operations research," European Journal of Operational Research, Elsevier, vol. 97(1), pages 1-16, February.
    7. Berkelaar, A.B. & Dert, C.L. & Oldenkamp, K.P.B. & Zhang, S., 1999. "A primal-dual decomposition based interior point approach to two-stage stochastic linear programming," Econometric Institute Research Papers EI 9918-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    8. Escudero, L. F. & Fuente, J. L. de la & García, C. & Prieto, Francisco J., 1996. "A parallel computation approach for solving multistage stochastic network problems," DES - Working Papers. Statistics and Econometrics. WS 10455, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Diana Barro & Elio Canestrelli, 2005. "Time and nodal decomposition with implicit non-anticipativity constraints in dynamic portfolio optimization," GE, Growth, Math methods 0510011, EconWPA.
    10. Jacek Gondzio & Andreas Grothey, 2009. "Exploiting structure in parallel implementation of interior point methods for optimization," Computational Management Science, Springer, vol. 6(2), pages 135-160, May.
    11. Emmanuel Fragnière & Jacek Gondzio & Robert Sarkissian & Jean-Philippe Vial, 2000. "A Structure-Exploiting Tool in Algebraic Modeling Languages," Management Science, INFORMS, vol. 46(8), pages 1145-1158, August.
    12. Meszaros, Csaba, 1997. "The augmented system variant of IPMs in two-stage stochastic linear programming computation," European Journal of Operational Research, Elsevier, vol. 101(2), pages 317-327, September.
    13. Berkelaar, Arjan & Dert, Cees & Oldenkamp, Bart, 1999. "A primal-dual decompsition-based interior point approach to two-stage stochastic linear programming," Serie Research Memoranda 0026, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    14. J. Gondzio, 1994. "Preconditioned Conjugate Gradients in an Interior Point Method for Two-stage Stochastic Programming," Working Papers wp94130, International Institute for Applied Systems Analysis.
    15. Bocanegra, Silvana & Castro, Jordi & Oliveira, Aurelio R.L., 2013. "Improving an interior-point approach for large block-angular problems by hybrid preconditioners," European Journal of Operational Research, Elsevier, vol. 231(2), pages 263-273.
    16. A. Ruszczynski, 1993. "Interior Point Methods in Stochastic Programming," Working Papers wp93008, International Institute for Applied Systems Analysis.
    17. Cosmin Petra & Mihai Anitescu, 2012. "A preconditioning technique for Schur complement systems arising in stochastic optimization," Computational Optimization and Applications, Springer, vol. 52(2), pages 315-344, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:34:y:1988:i:12:p:1472-1479. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.