IDEAS home Printed from https://ideas.repec.org/p/vnm/wpaper/165.html
   My bibliography  Save this paper

Some proposals about multivariate risk measurement

Author

Listed:
  • Marta Cardin

    () (Department of Applied Mathematics, University of Venice)

  • Elisa Pagani

    () (Department of Quantitative Methods, University Bicocca of Milan)

Abstract

In actuarial literature the properties of risk measures or insurance premium principles have been extensively studied. In our work we propose a characterization of some particular classes of multivariate and bivariate risk measures. Given two random variables we can define an univariate integral stochastic ordering by considering a set of functions that, through their peculiar properties, originate different stochastic orderings. These stochastic order relations of integral form may be extended to cover also the case of random vectors. It is, in fact, proposed a kind of stop-loss premium, and then a stop-loss order in the multivariate setting and some equivalent conditions. We propose an axiomatic approach based on a minimal set of properties which characterizes an insurance premium principle. In the univariate case we know that Conditional Value at Risk can be represented through distortion risk measures and a distortion risk measure can be viewed as a combination of CVaRs, we propose a generalization of this result in a multivariate framework. In the bivariate case we want to compare the concept of risk measure to that one of concordance measure when the marginals are given.

Suggested Citation

  • Marta Cardin & Elisa Pagani, 2008. "Some proposals about multivariate risk measurement," Working Papers 165, Department of Applied Mathematics, Università Ca' Foscari Venezia.
  • Handle: RePEc:vnm:wpaper:165
    as

    Download full text from publisher

    File URL: http://virgo.unive.it/wpideas/storage/2008wp165.pdf
    File Function: First version, 2008
    Download Restriction: no

    References listed on IDEAS

    as
    1. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 26(01), pages 71-92, May.
    2. Marta Cardin & Graziella Pacelli, 2006. "On the characterization of convex premium principles," Working Papers 142, Department of Applied Mathematics, Università Ca' Foscari Venezia.
    3. Muller, Alfred, 1997. "Stop-loss order for portfolios of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 21(3), pages 219-223, December.
    4. Scarsini, Marco, 1985. "Stochastic dominance with pair-wise risk aversion," Journal of Mathematical Economics, Elsevier, vol. 14(2), pages 187-201, April.
    5. Müller, Alfred & Scarsini, Marco, 2000. "Some Remarks on the Supermodular Order," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 107-119, April.
    6. Joe, Harry, 1990. "Multivariate concordance," Journal of Multivariate Analysis, Elsevier, vol. 35(1), pages 12-30, October.
    7. Wu, Xianyi & Zhou, Xian, 2006. "A new characterization of distortion premiums via countable additivity for comonotonic risks," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 324-334, April.
    8. Denuit, Michel & Lefevre, Claude & Mesfioui, M'hamed, 1999. "A class of bivariate stochastic orderings, with applications in actuarial sciences," Insurance: Mathematics and Economics, Elsevier, vol. 24(1-2), pages 31-50, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vnm:wpaper:165. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marco LiCalzi). General contact details of provider: http://edirc.repec.org/data/dmvenit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.