IDEAS home Printed from https://ideas.repec.org/p/ucr/wpaper/202303.html
   My bibliography  Save this paper

Generalized Kernel Regularized Least Squares Estimator with Parametric Error Covariance

Author

Listed:
  • Justin Dang

    (Department of Economics, University of San Diego)

  • Aman Ullah

    (Department of Economics, University of California Riverside)

Abstract

A two-step estimator of a nonparametric regression function via KRLS with parametric error covariance is proposed. The KRLS, not considering any information in the error covariance, is improved by incorporating a parametric error covariance, allowing for both heteroskedasticity and autocorrelation, in estimating the regression function. A two step procedure is used, where in the first step, the parametric error covariance is estimated from the residuals obtained by a KRLS regression and in the second step, another KRLS regression based on transformed variables from the error covariance is estimated. Theoretical results including bias, variance, and asymptotics are derived. Simulation results show that the proposed estimator outperforms the KRLS in both heteroskedastic errors and autocorrelated error cases. An empirical example is illustrated with estimating an airline cost function under a random effects model with heteroskedastic and correlated errors. The derivatives are evaluated, and the average partial effects of the inputs are determined in the application.

Suggested Citation

  • Justin Dang & Aman Ullah, 2022. "Generalized Kernel Regularized Least Squares Estimator with Parametric Error Covariance," Working Papers 202303, University of California at Riverside, Department of Economics, revised Mar 2023.
  • Handle: RePEc:ucr:wpaper:202303
    as

    Download full text from publisher

    File URL: https://economics.ucr.edu/repec/ucr/wpaper/202303.pdf
    File Function: First version, 2022
    Download Restriction: no

    File URL: https://economics.ucr.edu/repec/ucr/wpaper/202303R.pdf
    File Function: Revised version, 2023
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    2. McLeod, A. Ian & Yu, Hao & Krougly, Zinovi L., 2007. "Algorithms for Linear Time Series Analysis: With R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i05).
    3. Hsiao, Cheng & Li, Qi & Racine, Jeffrey S., 2007. "A consistent model specification test with mixed discrete and continuous data," Journal of Econometrics, Elsevier, vol. 140(2), pages 802-826, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Justin Dang & Aman Ullah, 2023. "Generalized kernel regularized least squares estimator with parametric error covariance," Empirical Economics, Springer, vol. 64(6), pages 3059-3088, June.
    2. Boikos, Spyridon & Bucci, Alberto & Stengos, Thanasis, 2013. "Non-monotonicity of fertility in human capital accumulation and economic growth," Journal of Macroeconomics, Elsevier, vol. 38(PA), pages 44-59.
    3. Arthur Novaes de Amorim & Rob Deardon & Vineet Saini, 2021. "A stacked ensemble method for forecasting influenza-like illness visit volumes at emergency departments," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-15, March.
    4. Dean Fantazzini, 2024. "Adaptive Conformal Inference for Computing Market Risk Measures: An Analysis with Four Thousand Crypto-Assets," JRFM, MDPI, vol. 17(6), pages 1-44, June.
    5. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    6. Nobre, André M. & Severiano, Carlos A. & Karthik, Shravan & Kubis, Marek & Zhao, Lu & Martins, Fernando R. & Pereira, Enio B. & Rüther, Ricardo & Reindl, Thomas, 2016. "PV power conversion and short-term forecasting in a tropical, densely-built environment in Singapore," Renewable Energy, Elsevier, vol. 94(C), pages 496-509.
    7. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    8. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    9. Pinto, Jeronymo Marcondes & Marçal, Emerson Fernandes, 2019. "Cross-validation based forecasting method: a machine learning approach," Textos para discussão 498, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    10. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    11. Schipfer, Fabian & Kranzl, Lukas & Olsson, Olle & Lamers, Patrick, 2020. "The European wood pellets for heating market - Price developments, trade and market efficiency," Energy, Elsevier, vol. 212(C).
    12. Francesco Lisi & Ismail Shah, 2024. "Joint Component Estimation for Electricity Price Forecasting Using Functional Models," Energies, MDPI, vol. 17(14), pages 1-18, July.
    13. Amara-Ouali, Yvenn & Fasiolo, Matteo & Goude, Yannig & Yan, Hui, 2023. "Daily peak electrical load forecasting with a multi-resolution approach," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1272-1286.
    14. Vuong, Van-Dai & Nguyen, Luong-Ha & Goulet, James-A., 2025. "Coupling LSTM neural networks and state-space models through analytically tractable inference," International Journal of Forecasting, Elsevier, vol. 41(1), pages 128-140.
    15. Zhu, Rong, 2011. "NILS Working paper no 170. The impact of major--job mismatch on college graduates' early career earnings," NILS Working Papers 26072, National Institute of Labour Studies.
    16. Croonenbroeck, Carsten & Dahl, Christian Møller, 2014. "Accurate medium-term wind power forecasting in a censored classification framework," Energy, Elsevier, vol. 73(C), pages 221-232.
    17. Svetunkov, Ivan & Chen, Huijing & Boylan, John E., 2023. "A new taxonomy for vector exponential smoothing and its application to seasonal time series," European Journal of Operational Research, Elsevier, vol. 304(3), pages 964-980.
    18. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    19. David Zendle & Catherine Flick & Elena Gordon-Petrovskaya & Nick Ballou & Leon Y. Xiao & Anders Drachen, 2023. "No evidence that Chinese playtime mandates reduced heavy gaming in one segment of the video games industry," Nature Human Behaviour, Nature, vol. 7(10), pages 1753-1766, October.
    20. Schaer, Oliver & Kourentzes, Nikolaos & Fildes, Robert, 2019. "Demand forecasting with user-generated online information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 197-212.

    More about this item

    Keywords

    Nonparametric estimator; Semiparametric models; Machine Learning; Kernel Regularized Least Squares; Covariance; Heteroskedasticity; Serial Correlation;
    All these keywords.

    JEL classification:

    • C - Mathematical and Quantitative Methods
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucr:wpaper:202303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kelvin Mac (email available below). General contact details of provider: https://edirc.repec.org/data/deucrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.