IDEAS home Printed from https://ideas.repec.org/p/trr/qfrawp/201901.html
   My bibliography  Save this paper

Systemic Impact of the Risk Based Fund Classification and Implications for Fund Management

Author

Listed:
  • Martin Ewen
  • Marc Oliver Rieger

Abstract

This paper examines the impact of European legislation regarding risk classification of mutual funds. We conduct analyses on a set of worldwide equity indices and find that a strategy based on the long term volatility as it is imposed by the Synthetic Risk Reward Indicator (SRRI) would lead to substantial variations in exposures ranging from short phases of very high leverage to long periods of under-investments that would be required to keep the risk classes. In some cases funds will be forced to migrate to higher risk classes due to limited means to reduce volatilities after crises events. In other cases they might have to migrate to lower risk classes or increase their leverage to ridiculous amounts. Overall we find if the SRRI creates a binding mechanism for fund managers, it will have substantial negative impact on portfolio management.

Suggested Citation

  • Martin Ewen & Marc Oliver Rieger, 2019. "Systemic Impact of the Risk Based Fund Classification and Implications for Fund Management," Working Paper Series 2019-01, University of Trier, Research Group Quantitative Finance and Risk Analysis.
  • Handle: RePEc:trr:qfrawp:201901
    as

    Download full text from publisher

    File URL: http://www.uni-trier.de/fileadmin/fb4/prof/BWL/FIN/QFRA_Working_Papers/QFRA_19-01.pdf
    File Function: First version, 2019
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    2. Paul Harrison & Harold H. Zhang, 1999. "An Investigation Of The Risk And Return Relation At Long Horizons," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 399-408, August.
    3. Amit Goyal & Pedro Santa-Clara, 2003. "Idiosyncratic Risk Matters!," Journal of Finance, American Finance Association, vol. 58(3), pages 975-1008, June.
    4. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    5. Robert Engle, 2001. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 157-168, Fall.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Herr, Donovan & Clausse, Emilien & Vrins, Frédéric, 2021. "Migration to the PRIIPs framework: what impact on the European risk indicator of UCITS funds ?," LIDAM Discussion Papers LFIN 2021012, Université catholique de Louvain, Louvain Finance (LFIN).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Ewen, 2018. "Where is the Risk Reward? The Impact of Volatility-Based Fund Classification on Performance," Risks, MDPI, vol. 6(3), pages 1-20, August.
    2. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    3. Long H. Vo, 2017. "Estimating Financial Volatility with High-Frequency Returns," Journal of Finance and Economics Research, Geist Science, Iqra University, Faculty of Business Administration, vol. 2(2), pages 84-114, October.
    4. Walid Abass Mohammed, 2021. "Volatility Spillovers among Developed and Developing Countries: The Global Foreign Exchange Markets," JRFM, MDPI, vol. 14(6), pages 1-30, June.
    5. Allen, David E. & McAleer, Michael & Powell, Robert J. & Singh, Abhay K., 2017. "Volatility Spillovers from Australia's major trading partners across the GFC," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 159-175.
    6. Carl H. Korkpoe & Peterson Owusu Junior, 2018. "Behaviour of Johannesburg Stock Exchange All Share Index Returns - An Asymmetric GARCH and News Impact Effects Approach," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 68(1), pages 26-42, January-M.
    7. De Ponti, Pietro & Romagnoli, Matteo, 2022. "Financial implications of the EU Emission Trading System: an analysis of wavelet coherence and volatility spillovers," FEEM Working Papers 323874, Fondazione Eni Enrico Mattei (FEEM).
    8. Dahl, Roy Endré & Oglend, Atle & Yahya, Muhammad, 2020. "Dynamics of volatility spillover in commodity markets: Linking crude oil to agriculture," Journal of Commodity Markets, Elsevier, vol. 20(C).
    9. Angelos Kanas, 2013. "The risk-return relation and VIX: evidence from the S&P 500," Empirical Economics, Springer, vol. 44(3), pages 1291-1314, June.
    10. Lundblad, Christian, 2007. "The risk return tradeoff in the long run: 1836-2003," Journal of Financial Economics, Elsevier, vol. 85(1), pages 123-150, July.
    11. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
    12. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. repec:zbw:cfswop:wp200508 is not listed on IDEAS
    14. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    15. Perry Sadorsky & Michael D. McKenzie, 2008. "Power transformation models and volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 587-606.
    16. Salvador, Enrique & Floros, Christos & Arago, Vicent, 2014. "Re-examining the risk–return relationship in Europe: Linear or non-linear trade-off?," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 60-77.
    17. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    18. Bai, Jennie & Bali, Turan G. & Wen, Quan, 2021. "Is there a risk-return tradeoff in the corporate bond market? Time-series and cross-sectional evidence," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1017-1037.
    19. Wu, Liuren, 2018. "Estimating risk-return relations with analysts price targets," Journal of Banking & Finance, Elsevier, vol. 93(C), pages 183-197.
    20. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies.
    21. Eduardo Rossi, 2010. "Univariate GARCH models: a survey (in Russian)," Quantile, Quantile, issue 8, pages 1-67, July.

    More about this item

    Keywords

    portfolio risk; volatility; SRRI; regulation;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:trr:qfrawp:201901. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/petride.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Artem Dyachenko (email available below). General contact details of provider: https://edirc.repec.org/data/petride.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.