IDEAS home Printed from https://ideas.repec.org/p/tiu/tiucen/00bed9cb-d34c-4e98-93ef-e805fce63fa0.html
   My bibliography  Save this paper

Stochastic Intrinsic Kriging for Simulation Metamodelling

Author

Listed:
  • Mehdad, Ehsan

    (Tilburg University, Center For Economic Research)

  • Kleijnen, J.P.C.

    (Tilburg University, Center For Economic Research)

Abstract

We derive intrinsic Kriging, using Matherons intrinsic random functions which eliminate the trend in classic Kriging. We formulate this intrinsic Kriging as a metamodel in deterministic and random simulation models. For random simulation we derive an experimental design that also specifies the number of replications that varies with the input combinations. We compare intrinsic Kriging and classic Kriging in several numerical experiments with deterministic and random simulations. These experiments suggest that intrinsic Kriging gives more accurate metamodel, in most experiments.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstr
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Mehdad, Ehsan & Kleijnen, J.P.C., 2015. "Stochastic Intrinsic Kriging for Simulation Metamodelling," Discussion Paper 2015-038, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:00bed9cb-d34c-4e98-93ef-e805fce63fa0
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/7403168/2015_038.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bruce Ankenman & Barry L. Nelson & Jeremy Staum, 2010. "Stochastic Kriging for Simulation Metamodeling," Operations Research, INFORMS, vol. 58(2), pages 371-382, April.
    2. E. Vazquez & E. Walter & G. Fleury, 2005. "Intrinsic Kriging and prior information," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 21(2), pages 215-226, March.
    3. Ward Whitt, 1989. "Planning Queueing Simulations," Management Science, INFORMS, vol. 35(11), pages 1341-1366, November.
    4. Hong Wan & Bruce E. Ankenman & Barry L. Nelson, 2010. "Improving the Efficiency and Efficacy of Controlled Sequential Bifurcation for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 482-492, August.
    5. J. D. Opsomer & D. Ruppert & M. P. Wand & U. Holst & O. Hössjer, 1999. "Kriging with Nonparametric Variance Function Estimation," Biometrics, The International Biometric Society, vol. 55(3), pages 704-710, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ehsan Mehdad & Jack P. C. Kleijnen, 2018. "Efficient global optimisation for black-box simulation via sequential intrinsic Kriging," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1725-1737, November.
    2. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging," Discussion Paper 2014-063, Tilburg University, Center for Economic Research.
    3. Mehdad, E., 2015. "Kriging metamodels and global opimization in simulation," Other publications TiSEM 5b5c276a-fe68-4ce9-b8a8-1, Tilburg University, School of Economics and Management.
    4. Nathan E. Wilson, 2021. "The Impact of Competition on Investment: Evidence From California Hospitals," Journal of Industrial Economics, Wiley Blackwell, vol. 69(1), pages 1-32, March.
    5. Feng, Ben Mingbin & Li, Johnny Siu-Hang & Zhou, Kenneth Q., 2022. "Green nested simulation via likelihood ratio: Applications to longevity risk management," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 285-301.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging," Other publications TiSEM 8fa8d96f-a086-4c4b-88ab-9, Tilburg University, School of Economics and Management.
    2. Chen, Xi & Zhou, Qiang, 2017. "Sequential design strategies for mean response surface metamodeling via stochastic kriging with adaptive exploration and exploitation," European Journal of Operational Research, Elsevier, vol. 262(2), pages 575-585.
    3. Kleijnen, Jack P.C., 2017. "Regression and Kriging metamodels with their experimental designs in simulation: A review," European Journal of Operational Research, Elsevier, vol. 256(1), pages 1-16.
    4. Ehsan Mehdad & Jack P. C. Kleijnen, 2018. "Efficient global optimisation for black-box simulation via sequential intrinsic Kriging," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1725-1737, November.
    5. Shi, Wen & Shang, Jennifer & Liu, Zhixue & Zuo, Xiaolu, 2014. "Optimal design of the auto parts supply chain for JIT operations: Sequential bifurcation factor screening and multi-response surface methodology," European Journal of Operational Research, Elsevier, vol. 236(2), pages 664-676.
    6. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    7. Yuan, Jun & Ng, Szu Hui, 2013. "A sequential approach for stochastic computer model calibration and prediction," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 273-286.
    8. Gan, Guojun & Lin, X. Sheldon, 2015. "Valuation of large variable annuity portfolios under nested simulation: A functional data approach," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 138-150.
    9. Osorio, Carolina, 2019. "High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of large-scale road networks," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 18-43.
    10. Russell R. Barton & Barry L. Nelson & Wei Xie, 2014. "Quantifying Input Uncertainty via Simulation Confidence Intervals," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 74-87, February.
    11. Jack P. C. Kleijnen, 2017. "Comment on Park et al.’s “Robust Kriging in computer experiments”," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 739-740, June.
    12. Mike Ludkovski & Yuri Saporito, 2020. "KrigHedge: Gaussian Process Surrogates for Delta Hedging," Papers 2010.08407, arXiv.org, revised Jan 2022.
    13. Xi Chen & Bruce E. Ankenman & Barry L. Nelson, 2013. "Enhancing Stochastic Kriging Metamodels with Gradient Estimators," Operations Research, INFORMS, vol. 61(2), pages 512-528, April.
    14. Ockerman, Daniel H. & Goldsman, David, 1999. "Student t-tests and compound tests to detect transients in simulated time series," European Journal of Operational Research, Elsevier, vol. 116(3), pages 681-691, August.
    15. Kamiński, Bogumił, 2015. "A method for the updating of stochastic kriging metamodels," European Journal of Operational Research, Elsevier, vol. 247(3), pages 859-866.
    16. Feng Yang & Bruce E. Ankenman & Barry L. Nelson, 2008. "Estimating Cycle Time Percentile Curves for Manufacturing Systems via Simulation," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 628-643, November.
    17. Kleijnen, Jack P.C. & van Beers, W.C.M. & van Nieuwenhuyse, I., 2011. "Expected Improvement in Efficient Global Optimization Through Bootstrapped Kriging - Replaces CentER DP 2010-62," Discussion Paper 2011-015, Tilburg University, Center for Economic Research.
    18. Feng Yang & Bruce Ankenman & Barry L. Nelson, 2007. "Efficient generation of cycle time‐throughput curves through simulation and metamodeling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(1), pages 78-93, February.
    19. J P C Kleijnen & W C M van Beers, 2013. "Monotonicity-preserving bootstrapped Kriging metamodels for expensive simulations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(5), pages 708-717, May.
    20. Marrel, Amandine & Iooss, Bertrand & Van Dorpe, François & Volkova, Elena, 2008. "An efficient methodology for modeling complex computer codes with Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4731-4744, June.

    More about this item

    Keywords

    simulation; gaussian process; Kriging; intrinsic random functions; metamodel;
    All these keywords.

    JEL classification:

    • C0 - Mathematical and Quantitative Methods - - General
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C9 - Mathematical and Quantitative Methods - - Design of Experiments
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:00bed9cb-d34c-4e98-93ef-e805fce63fa0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: http://center.uvt.nl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.