IDEAS home Printed from https://ideas.repec.org/p/ssb/dispap/929.html
   My bibliography  Save this paper

Ways to project fertility in Europe. Perceptions of current practices and outcomes

Author

Listed:

Abstract

National statistical offices responsible for population projections should regularly evaluate their work. Norway is currently considering changing the way fertility is projected. To establish a solid basis for deciding the way forward, this paper describes the different ways various European countries project fertility in their national population projections. Data were collected in two steps: First, statistical offices in Europe were asked to respond to a questionnaire regarding their current practices. The results were summarized qualitatively and quantitatively. The different methods used by the participating countries were categorized into four broad groups: 1) Model-based deterministic projections; 2) Model-based stochastic projections (frequentist and/or Bayesian); 3) Expert-based projections; 4) Other. A descriptive analysis of similarities and differences was performed to assess which methods were most common, how satisfied the statistical offices were with their method, the public availability of documentation, and the extent to which the accuracy of the projections was regularly assessed. Second, eight countries were selected for a more in-depth analysis. These countries take different approaches to projecting fertility, illustrating the range of options available and in use across Europe. We examined readily available information and documentation online, as well as reports and journal articles. For comparison purposes, this study also includes the fertility projection methods utilized by Eurostat and the UN. Some strengths and weaknesses associated with the different methods are presented, discussing both comments and feedback from statistical offices as well as those which emerge as part of the comparisons made in this study. In summary, a wide variety of methods are currently used. Whereas some countries are satisfied with their methods, documentation and results, others are actively working to improve their projections and outputs. It is hoped this study will act as a useful resource for individuals and agencies considering changing the way they project fertility, while perhaps also facilitating cross-national learning and knowledge exchange.

Suggested Citation

  • Rebecca Folkman Gleditsch & Astri Syse, 2020. "Ways to project fertility in Europe. Perceptions of current practices and outcomes," Discussion Papers 929, Statistics Norway, Research Department.
  • Handle: RePEc:ssb:dispap:929
    as

    Download full text from publisher

    File URL: https://www.ssb.no/en/forskning/discussion-papers/_attachment/420678
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ševčíková, Hana & Alkema, Leontine & Raftery, Adrian, 2011. "bayesTFR: An R package for Probabilistic Projections of the Total Fertility Rate," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i01).
    2. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    3. Leontine Alkema & Adrian Raftery & Patrick Gerland & Samuel Clark & François Pelletier & Thomas Buettner & Gerhard Heilig, 2011. "Probabilistic Projections of the Total Fertility Rate for All Countries," Demography, Springer;Population Association of America (PAA), vol. 48(3), pages 815-839, August.
    4. Carl Schmertmann, 2003. "A system of model fertility schedules with graphically intuitive parameters," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 9(5), pages 81-110.
    5. Ådne Cappelen & Terje Skjerpen & Marianne Tønnessen, 2015. "Forecasting Immigration in Official Population Projections Using an Econometric Model," International Migration Review, Wiley Blackwell, vol. 49(4), pages 945-980, December.
    6. Nico Keilman, 2018. "Probabilistic demographic forecasts," Vienna Yearbook of Population Research, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna, vol. 16(1), pages 025-035.
    7. Rowland, Donald T., 2003. "Demographic Methods and Concepts," OUP Catalogue, Oxford University Press, number 9780198752639.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Gleditsch Rebecca Folkman & Syse Astri & Thomas Michael J., 2021. "Fertility Projections in a European Context: A Survey of Current Practices among Statistical Agencies," Journal of Official Statistics, Sciendo, vol. 37(3), pages 547-568, September.
    3. Rebecca F. Gleditsch & Adrian F. Rogne & Astri Syse & Michael Thomas, 2021. "The accuracy of Statistics Norway’s national population projections," Discussion Papers 948, Statistics Norway, Research Department.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    3. Vanella, Patrizio, 2017. "Age- and Sex-Specific Fertility in Germany until the Year 2040 - The Impact of International Migration," Hannover Economic Papers (HEP) dp-606, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    4. Gleditsch Rebecca Folkman & Syse Astri & Thomas Michael J., 2021. "Fertility Projections in a European Context: A Survey of Current Practices among Statistical Agencies," Journal of Official Statistics, Sciendo, vol. 37(3), pages 547-568, September.
    5. Ševčíková, Hana & Raftery, Adrian E., 2016. "bayesPop: Probabilistic Population Projections," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 75(i05).
    6. Francesco Billari & Rebecca Graziani & Eugenio Melilli, 2014. "Stochastic Population Forecasting Based on Combinations of Expert Evaluations Within the Bayesian Paradigm," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1933-1954, October.
    7. Vanella, Patrizio, 2016. "The Total Fertility Rate in Germany until 2040 - A Stochastic Principal Components Projection based on Age-specific Fertility Rates," Hannover Economic Papers (HEP) dp-579, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    8. Patrizio Vanella & Philipp Deschermeier & Christina B. Wilke, 2020. "An Overview of Population Projections—Methodological Concepts, International Data Availability, and Use Cases," Forecasting, MDPI, vol. 2(3), pages 1-18, September.
    9. Maria Tzitiridou-Chatzopoulou & Georgia Zournatzidou & Michael Kourakos, 2024. "Predicting Future Birth Rates with the Use of an Adaptive Machine Learning Algorithm: A Forecasting Experiment for Scotland," IJERPH, MDPI, vol. 21(7), pages 1-13, June.
    10. Daphne H. Liu & Adrian E. Raftery, 2020. "How Do Education and Family Planning Accelerate Fertility Decline?," Population and Development Review, The Population Council, Inc., vol. 46(3), pages 409-441, September.
    11. Adrian Raftery & Jennifer Chunn & Patrick Gerland & Hana Ševčíková, 2013. "Bayesian Probabilistic Projections of Life Expectancy for All Countries," Demography, Springer;Population Association of America (PAA), vol. 50(3), pages 777-801, June.
    12. Asako Ohinata & Dimitrios Varvarigos, 2020. "Demographic Transition and Fertility Rebound in Economic Development," Scandinavian Journal of Economics, Wiley Blackwell, vol. 122(4), pages 1640-1670, October.
    13. Michael Pearce & Adrian E. Raftery, 2021. "Probabilistic forecasting of maximum human lifespan by 2100 using Bayesian population projections," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 44(52), pages 1271-1294.
    14. Cristina Rueda-Sabater & Pedro Alvarez-Esteban, 2008. "The analysis of age-specific fertility patterns via logistic models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(9), pages 1053-1070.
    15. Phoebe Koundouri & Georgios I. Papayiannis & Achilleas Vassilopoulos & Athanasios N. Yannacopoulos, 2023. "Probabilistic Scenario-Based Assessment of National Food Security Risks with Application to Egypt and Ethiopia," Papers 2312.04428, arXiv.org, revised Dec 2023.
    16. Carl P. Schmertmann & Marcos R. Gonzaga, 2018. "Bayesian Estimation of Age-Specific Mortality and Life Expectancy for Small Areas With Defective Vital Records," Demography, Springer;Population Association of America (PAA), vol. 55(4), pages 1363-1388, August.
    17. David J Sharrow & Samuel J Clark & Adrian E Raftery, 2014. "Modeling Age-Specific Mortality for Countries with Generalized HIV Epidemics," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-10, May.
    18. Heinz Stefan, 2014. "Uncertainty quantification of world population growth: A self-similar PDF model," Monte Carlo Methods and Applications, De Gruyter, vol. 20(4), pages 261-277, December.
    19. Pardey, Philip G. & Beddow, Jason M. & Hurley, Terrance M. & Beatty, Timothy K.M. & Eidman, Vernon R., 2014. "A Bounds Analysis of World Food Futures: Global Agriculture Through to 2050," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(4), October.
    20. Alkema, Leontine, 2020. "The Global Burden of Disease fertility forecasts: Summary of the approach used and associated statistical concerns," OSF Preprints 3m6va, Center for Open Science.

    More about this item

    Keywords

    Demographic Trends; Fertility; Europe; Methods; Projections.;
    All these keywords.

    JEL classification:

    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts
    • J13 - Labor and Demographic Economics - - Demographic Economics - - - Fertility; Family Planning; Child Care; Children; Youth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssb:dispap:929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: L Maasø (email available below). General contact details of provider: https://edirc.repec.org/data/ssbgvno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.