IDEAS home Printed from
   My bibliography  Save this paper

A characterization of self-affine processes in finance through the scaling function


  • Marina Resta

    () (DIEM sez. Matematica Finanziaria, via Vivaldi 5, 16126, Genova)

  • Davide Sciutti


This work focuses on a method to characterize stochastic processes by way of their scaling function tau(·). The kernel idea is that, notwithstanding the properties of the stochastic generating process of raw data, a minimum set of conditions is required to provide empirical estimation of the corresponding scaling function. Additionally, if the generating process belongs to the class of self-affine processes it is possible to express tau in a very simple and elegant way. Starting from the defnition of self-affinity (self-similarity) given By Castaing in the feld of fully developed turbulence, a general closed Form for the scaling function of self-similar processes will be derived, using the relationships between the probability density functions of the increments of self-similar processes at finer and coarser scales through a self-affinity kernel. In particular, the attention will be focused onto two main aspects of Castaing’s formalism: a) Starting from the the Castaing’s formula it is possible to find the scaling function as the Laplace transform of a proper self–affinity kernel; b)conversely, if the functional form of function tau is already known, it is possible to uniquely find the corresponding self-affinity kernel. In order to prove the generality of the results obtained, two examples will be provided (in the mono-fractal and in the multi-fractal case). The latter result is quite interesting, for its practical (econometric) applications, when the behaviour of real data can be replicated by means of self-affine processes. In such case, the generalization provided to the Castaing’s formula makes possible to link through a closed form the (given) probability density function of the increments at some larger time scale together to the (ungiven) probability density function at a smaller scale, with proper parameters,according to the desired scaling function. Obviously this assumption holds if we assume the self-affinity of process under examination. However, this appear to be not too much conditioning. To such purpose, the shape of the scaling function tau of Dow Jones daily returns will be estimated, and hence compared to those derived from time series generated by different stochastic processes (mostly self-affine). first set of conclusions will be hence drawn, since the analysis of the shape of scaling functions suggests a possible criterion to choose the best matching stochastic process to model empirical data.

Suggested Citation

  • Marina Resta & Davide Sciutti, "undated". "A characterization of self-affine processes in finance through the scaling function," Modeling, Computing, and Mastering Complexity 2003 13, Society for Computational Economics.
  • Handle: RePEc:sce:cplx03:13

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Laurent Calvet & Adlai Fisher, 2002. "Multifractality In Asset Returns: Theory And Evidence," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
    2. Calvet, Laurent & Fisher, Adlai, 2001. "Forecasting multifractal volatility," Journal of Econometrics, Elsevier, vol. 105(1), pages 27-58, November.
    3. Ole Barndorff-Nielsen & Neil Shephard, 2000. "Non-Gaussian OU based models and some of their uses in financial economics," OFRC Working Papers Series 2000mf01, Oxford Financial Research Centre.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Self-affinity; scaling function.;

    JEL classification:

    • C0 - Mathematical and Quantitative Methods - - General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:cplx03:13. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.