IDEAS home Printed from
   My bibliography  Save this paper

Future prospects of microalgal biofuel production systems


  • Evan Stephens

    (University of Queensland)

  • Ian Ross

    (University of Queensland)

  • Jan H. Mussgnug

    (University of Bielefeld)

  • Liam Wagner

    () (Department of Economics, University of Queensland)

  • Michael A. Borowitzka

    (Murdoch University)

  • Clemens Posten

    (University of Karlsruhe)

  • Olaf Kruse

    (University of Bielefeld)

  • Ben Hankamer

    (University of Bielefeld)


Climate change mitigation, economic growth and stability, and the ongoing depletion of oil reserves are all major drivers for the development of economically rational, renewable energy technology platforms. Microalgae have re-emerged as a popular feedstock for the production of biofuels and other more valuable products. Even though integrated microalgal production systems have some clear advantages and present a promising alternative to highly controversial first generation biofuel systems, the associated hype has often exceeded the boundaries of reality. With a growing number of recent analyses demonstrating that despite the hype, these systems are conceptually sound and potentially sustainable given the available inputs, we review the research areas that are key to attaining economic reality and the future development of the industry.

Suggested Citation

  • Evan Stephens & Ian Ross & Jan H. Mussgnug & Liam Wagner & Michael A. Borowitzka & Clemens Posten & Olaf Kruse & Ben Hankamer, 2010. "Future prospects of microalgal biofuel production systems," Energy Economics and Management Group Working Papers 7-2010, School of Economics, University of Queensland, Australia.
  • Handle: RePEc:qld:uqeemg:7-2010

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Myers, Kevin S. & Klein, Sanford A. & Reindl, Douglas T., 2010. "Assessment of high penetration of solar photovoltaics in Wisconsin," Energy Policy, Elsevier, vol. 38(11), pages 7338-7345, November.
    2. Demiroren, A. & Yilmaz, U., 2010. "Analysis of change in electric energy cost with using renewable energy sources in Gökceada, Turkey: An island example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 323-333, January.
    3. Siddiqui, Afzal S. & Maribu, Karl, 2009. "Investment and upgrade in distributed generation under uncertainty," Energy Economics, Elsevier, vol. 31(1), pages 25-37, January.
    4. Nandi, Sanjoy Kumar & Ghosh, Himangshu Ranjan, 2010. "Prospect of wind–PV-battery hybrid power system as an alternative to grid extension in Bangladesh," Energy, Elsevier, vol. 35(7), pages 3040-3047.
    5. Kannan, R., 2009. "Uncertainties in key low carbon power generation technologies - Implication for UK decarbonisation targets," Applied Energy, Elsevier, vol. 86(10), pages 1873-1886, October.
    6. Corria, Maria Eugenia & Cobas, Vladimir Melian & Silva Lora, Electo, 2006. "Perspectives of Stirling engines use for distributed generation in Brazil," Energy Policy, Elsevier, vol. 34(18), pages 3402-3408, December.
    7. Zoulias, E.I. & Lymberopoulos, N., 2007. "Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems," Renewable Energy, Elsevier, vol. 32(4), pages 680-696.
    8. Fleten, S.-E. & Maribu, K.M. & Wangensteen, I., 2007. "Optimal investment strategies in decentralized renewable power generation under uncertainty," Energy, Elsevier, vol. 32(5), pages 803-815.
    9. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    10. Wickart, Marcel & Madlener, Reinhard, 2007. "Optimal technology choice and investment timing: A stochastic model of industrial cogeneration vs. heat-only production," Energy Economics, Elsevier, vol. 29(4), pages 934-952, July.
    11. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies," Energy Policy, Elsevier, vol. 35(9), pages 4424-4433, September.
    12. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2008. "Feasibility analysis of stand-alone renewable energy supply options for a large hotel," Renewable Energy, Elsevier, vol. 33(7), pages 1475-1490.
    13. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Feasibility analysis of renewable energy supply options for a grid-connected large hotel," Renewable Energy, Elsevier, vol. 34(4), pages 955-964.
    14. Weis, Timothy M. & Ilinca, Adrian, 2008. "The utility of energy storage to improve the economics of wind–diesel power plants in Canada," Renewable Energy, Elsevier, vol. 33(7), pages 1544-1557.
    15. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Case study feasibility analysis of renewable energy supply options for small to medium-sized tourist accommodations," Renewable Energy, Elsevier, vol. 34(4), pages 1134-1144.
    16. Kannan, Ramachandran & Strachan, Neil, 2009. "Modelling the UK residential energy sector under long-term decarbonisation scenarios: Comparison between energy systems and sectoral modelling approaches," Applied Energy, Elsevier, vol. 86(4), pages 416-428, April.
    17. Himri, Y. & Boudghene Stambouli, A. & Draoui, B. & Himri, S., 2008. "Techno-economical study of hybrid power system for a remote village in Algeria," Energy, Elsevier, vol. 33(7), pages 1128-1136.
    18. Ben Maalla, El Mehdi & Kunsch, Pierre L., 2008. "Simulation of micro-CHP diffusion by means of System Dynamics," Energy Policy, Elsevier, vol. 36(7), pages 2308-2319, July.
    19. Graham, Paul W. & Williams, David J., 2003. "Optimal technological choices in meeting Australian energy policy goals," Energy Economics, Elsevier, vol. 25(6), pages 691-712, November.
    20. Khan, M.J. & Iqbal, M.T., 2005. "Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland," Renewable Energy, Elsevier, vol. 30(6), pages 835-854.
    21. Lau, K.Y. & Yousof, M.F.M. & Arshad, S.N.M. & Anwari, M. & Yatim, A.H.M., 2010. "Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions," Energy, Elsevier, vol. 35(8), pages 3245-3255.
    22. Jablonski, Sophie & Strachan, Neil & Brand, Christian & Bauen, Ausilio, 2010. "The role of bioenergy in the UK's energy future formulation and modelling of long-term UK bioenergy scenarios," Energy Policy, Elsevier, vol. 38(10), pages 5799-5816, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Cerón-García, M.C. & Macías-Sánchez, M.D. & Sánchez-Mirón, A. & García-Camacho, F. & Molina-Grima, E., 2013. "A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source," Applied Energy, Elsevier, vol. 103(C), pages 341-349.
    2. Kalpesh K. Sharma & Holger Schuhmann & Peer M. Schenk, 2012. "High Lipid Induction in Microalgae for Biodiesel Production," Energies, MDPI, Open Access Journal, vol. 5(5), pages 1-22, May.
    3. Amaro, Helena M. & Macedo, Ângela C. & Malcata, F. Xavier, 2012. "Microalgae: An alternative as sustainable source of biofuels?," Energy, Elsevier, vol. 44(1), pages 158-166.
    4. repec:eee:appene:v:195:y:2017:i:c:p:1100-1111 is not listed on IDEAS
    5. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    6. repec:eee:rensus:v:74:y:2017:i:c:p:139-144 is not listed on IDEAS
    7. Adenle, Ademola A. & Haslam, Gareth E. & Lee, Lisa, 2013. "Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries," Energy Policy, Elsevier, vol. 61(C), pages 182-195.
    8. repec:eee:rensus:v:81:y:2018:i:p1:p:76-92 is not listed on IDEAS
    9. Yaoyang, Xu & Boeing, Wiebke J., 2013. "Mapping biofuel field: A bibliometric evaluation of research output," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 82-91.
    10. Michael Borowitzka & Navid Moheimani, 2013. "Sustainable biofuels from algae," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 13-25, January.
    11. Ringsmuth, Andrew K. & Landsberg, Michael J. & Hankamer, Ben, 2016. "Can photosynthesis enable a global transition from fossil fuels to solar fuels, to mitigate climate change and fuel-supply limitations?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 134-163.
    12. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    13. repec:eee:rensus:v:78:y:2017:i:c:p:356-368 is not listed on IDEAS

    More about this item


    biofuels; algal biofuels; alternative energy;

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qld:uqeemg:7-2010. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (SOE IT). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.