IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Extreme Value Analysis of Teletraffic Data

  • Tsourti, Zoi
  • Panaretos, John

An empirically verified characteristic of the expanding area of Internet is the longtailness of phenomena such as cpu time to complete a job, call holding times, files lengths requested, inter-arrival times and so on. Extreme values of the above quantities are liable to cause problems to the efficient operation of the network and call for effective design and management. Extreme-value analysis is an area of statistical analysis particularly concerned with the systematic study of extremes, providing useful insight to fields where extreme values are probable to occur and have detrimental effects, as is the case of teletraffics. In this paper we illustrate the main elements of this analysis and proceed to a detailed application of extreme-value analysis concepts to a specific teletraffic data set. This analysis verifies, too, the existence of long tails in the data.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 6391.

in new window

Date of creation: 2004
Date of revision:
Handle: RePEc:pra:mprapa:6391
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. M. I. Bar�o & J. A. Tawn, 1999. "Extremal analysis of short series with outliers: sea-levels and athletics records," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(4), pages 469-487.
  2. Jon Danielsson & Casper G. de Vries, 1998. "Beyond the Sample: Extreme Quantile and Probability Estimation," FMG Discussion Papers dp298, Financial Markets Group.
  3. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
  4. Tsourti, Zoi & Panaretos, John, 2001. "Extreme Value Index Estimators and Smoothing Alternatives: Review and Simulation Comparison," MPRA Paper 6384, University Library of Munich, Germany.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:6391. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.