IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/46242.html
   My bibliography  Save this paper

Test for Bandedness of High Dimensional Covariance Matrices with Bandwidth Estimation

Author

Listed:
  • Qiu, Yumou
  • Chen, Songxi

Abstract

Motivated by the latest effort to employ banded matrices to estimate a high-dimensional covariance Σ , we propose a test for Σ being banded with possible diverging bandwidth. The test is adaptive to the “large p , small n ” situations without assuming a specific parametric distribution for the data. We also formulate a consistent estimator for the bandwidth of a banded high-dimensional covariance matrix. The properties of the test and the bandwidth estimator are investigated by theoretical evaluations and simulation studies, as well as an empirical analysis on a protein mass spectroscopy data.

Suggested Citation

  • Qiu, Yumou & Chen, Songxi, 2012. "Test for Bandedness of High Dimensional Covariance Matrices with Bandwidth Estimation," MPRA Paper 46242, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:46242
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/46242/1/MPRA_paper_46242.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. James R. Schott, 2005. "Testing for complete independence in high dimensions," Biometrika, Biometrika Trust, vol. 92(4), pages 951-956, December.
    2. Adam J. Rothman & Elizaveta Levina & Ji Zhu, 2010. "A new approach to Cholesky-based covariance regularization in high dimensions," Biometrika, Biometrika Trust, vol. 97(3), pages 539-550.
    3. Bai, Z. D. & Silverstein, Jack W. & Yin, Y. Q., 1988. "A note on the largest eigenvalue of a large dimensional sample covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 26(2), pages 166-168, August.
    4. Rothman, Adam J. & Levina, Elizaveta & Zhu, Ji, 2009. "Generalized Thresholding of Large Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 177-186.
    5. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    2. Yamada, Yuki & Hyodo, Masashi & Nishiyama, Takahiro, 2017. "Testing block-diagonal covariance structure for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 305-316.
    3. Tiefeng Jiang & Yongcheng Qi, 2015. "Likelihood Ratio Tests for High-Dimensional Normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 988-1009, December.

    More about this item

    Keywords

    Banded covariance matrix; Bandwidth estimation; High data dimension; Large p; small n; Nonparametric.;

    JEL classification:

    • C0 - Mathematical and Quantitative Methods - - General
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • C9 - Mathematical and Quantitative Methods - - Design of Experiments
    • G0 - Financial Economics - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:46242. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.