IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/3547.html
   My bibliography  Save this paper

Verification theorem and construction of epsilon-optimal controls for control of abstract evolution equations

Author

Listed:
  • Fabbri, Giorgio
  • Gozzi, Fausto
  • Swiech, Andrzej

Abstract

We study several aspects of the dynamic programming approach to optimal control of abstract evolution equations, including a class of semilinear partial differential equations. We introduce and prove a verification theorem which provides a sufficient condition for optimality. Moreover we prove sub- and superoptimality principles of dynamic programming and give an explicit construction of $\epsilon$-optimal controls.

Suggested Citation

  • Fabbri, Giorgio & Gozzi, Fausto & Swiech, Andrzej, 2007. "Verification theorem and construction of epsilon-optimal controls for control of abstract evolution equations," MPRA Paper 3547, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:3547
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/3547/1/MPRA_paper_3547.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Silvia Faggian* & Fausto Gozzi, 2004. "On The Dynamic Programming Approach For Optimal Control Problems Of Pde'S With Age Structure," Mathematical Population Studies, Taylor & Francis Journals, vol. 11(3-4), pages 233-270.
    2. Emilio Barucci & Fausto Gozzi, 2001. "Technology adoption and accumulation in a vintage-capital model," Journal of Economics, Springer, vol. 74(1), pages 1-38, February.
    3. Barucci, Emilio & Gozzi, Fausto, 1998. "Investment in a vintage capital model," Research in Economics, Elsevier, vol. 52(2), pages 159-188, June.
    4. Gustav Feichtinger & Alexia Prskawetz & Vladimir M. Veliov, 2002. "Age-structured optimal control in population economics," MPIDR Working Papers WP-2002-045, Max Planck Institute for Demographic Research, Rostock, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabbri, Giorgio & Gozzi, Fausto & Zanco, Giovanni, 2021. "Verification results for age-structured models of economic–epidemics dynamics," Journal of Mathematical Economics, Elsevier, vol. 93(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabbri, Giorgio & Faggian, Silvia & Freni, Giuseppe, 2015. "On the Mitra–Wan forest management problem in continuous time," Journal of Economic Theory, Elsevier, vol. 157(C), pages 1001-1040.
    2. Faggian, Silvia & Gozzi, Fausto & Kort, Peter M., 2021. "Optimal investment with vintage capital: Equilibrium distributions," Journal of Mathematical Economics, Elsevier, vol. 96(C).
    3. Goetz, Renan-Ulrich & Hritonenko, Natali & Yatsenko, Yuri, 2008. "The optimal economic lifetime of vintage capital in the presence of operating costs, technological progress, and learning," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 3032-3053, September.
    4. Silvia Faggian, 2008. "Equilibrium Points for Optimal Investment with Vintage Capital," Working Papers 182, Department of Applied Mathematics, Università Ca' Foscari Venezia.
    5. Kredler, Matthias, 2014. "Vintage human capital and learning curves," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 154-178.
    6. Feichtinger, Gustav & Hartl, Richard F. & Kort, Peter M. & Veliov, Vladimir M., 2006. "Anticipation effects of technological progress on capital accumulation: a vintage capital approach," Journal of Economic Theory, Elsevier, vol. 126(1), pages 143-164, January.
    7. Raouf Boucekkine & Giorgio Fabbri & Salvatore Federico & Fausto Gozzi, 2018. "Geographic Environmental Kuznets Curves: The Optimal Growth Linear-Quadratic Case," AMSE Working Papers 1813, Aix-Marseille School of Economics, France.
    8. Fabbri, Giorgio & Gozzi, Fausto & Zanco, Giovanni, 2021. "Verification results for age-structured models of economic–epidemics dynamics," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    9. repec:spr:compst:v:78:y:2013:i:2:p:259-284 is not listed on IDEAS
    10. Silvia Faggian & Luca Grosset, 2013. "Optimal advertising strategies with age-structured goodwill," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(2), pages 259-284, October.
    11. Raouf Boucekkine & Giorgio Fabbri & Salvatore Federico & Fausto Gozzi, 2019. "A Spatiotemporal Framework for the Analytical Study of Optimal Growth Under Transboundary Pollution," Department of Economics University of Siena 813, Department of Economics, University of Siena.
    12. Faggian, Silvia & Gozzi, Fausto, 2010. "Optimal investment models with vintage capital: Dynamic programming approach," Journal of Mathematical Economics, Elsevier, vol. 46(4), pages 416-437, July.
    13. Jing Lu & Jianxiong Zhang & Fuxiao Lu & Wansheng Tang, 2020. "Optimal pricing on an age-specific inventory system for perishable items," Operational Research, Springer, vol. 20(2), pages 605-625, June.
    14. Feichtinger, Gustav & Hartl, Richard F. & Kort, Peter M. & Veliov, Vladimir M., 2006. "Capital accumulation under technological progress and learning: A vintage capital approach," European Journal of Operational Research, Elsevier, vol. 172(1), pages 293-310, July.
    15. Silvia Faggian & Luca Grosset, 2009. "Optimal investment in age-structured goodwill," Working Papers 194, Department of Applied Mathematics, Università Ca' Foscari Venezia.
    16. Feichtinger, Gustav & Hartl, Richard F. & Kort, Peter M. & Veliov, Vladimir M., 2005. "Environmental policy, the porter hypothesis and the composition of capital: Effects of learning and technological progress," Journal of Environmental Economics and Management, Elsevier, vol. 50(2), pages 434-446, September.
    17. Emmanuelle Augeraud-Véron & Raouf Boucekkine & Vladimir Veliov, 2019. "Distributed Optimal Control Models in Environmental Economics: A Review," AMSE Working Papers 1902, Aix-Marseille School of Economics, France.
    18. Julián David Parada, 2008. "Tasa de depreciación endógena y crecimiento económico," Documentos de Trabajo 004594, Universidad del Rosario.
    19. Ballestra, Luca Vincenzo, 2016. "The spatial AK model and the Pontryagin maximum principle," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 87-94.
    20. Feichtinger, G. & Hartl, R.F. & Kort, P.M. & Veliov, V., 2001. "Dynamic Investment Behavior Taking into Account Ageing of the Capital Good," Other publications TiSEM 1e12e7c6-11c2-4632-a8e2-1, Tilburg University, School of Economics and Management.
    21. B. Skritek & V. M. Veliov, 2015. "On the Infinite-Horizon Optimal Control of Age-Structured Systems," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 243-271, October.

    More about this item

    Keywords

    optimal control of PDE; verification theorem; dynamic programming; $epsilon$-optimal controls; Hamilton-Jacobi-Bellman equations;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:3547. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.