IDEAS home Printed from
   My bibliography  Save this paper

A comprehensive literature classification of simulation optimisation methods


  • Hachicha, Wafik
  • Ammeri, Ahmed
  • Masmoudi, Faouzi
  • Chachoub, Habib


Simulation Optimization (SO) provides a structured approach to the system design and configuration when analytical expressions for input/output relationships are unavailable. Several excellent surveys have been written on this topic. Each survey concentrates on only few classification criteria. This paper presents a literature survey with all classification criteria on techniques for SO according to the problem of characteristics such as shape of the response surface (global as compared to local optimization), objective functions (single or multiple objectives) and parameter spaces (discrete or continuous parameters). The survey focuses specifically on the SO problem that involves single per-formance measure

Suggested Citation

  • Hachicha, Wafik & Ammeri, Ahmed & Masmoudi, Faouzi & Chachoub, Habib, 2010. "A comprehensive literature classification of simulation optimisation methods," MPRA Paper 27652, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:27652

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    1. Kleijnen, Jack P. C., 2005. "An overview of the design and analysis of simulation experiments for sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 164(2), pages 287-300, July.
    2. Azadivar, Farhad & Lee, Young-Hae, 1988. "Optimization of discrete variable stochastic systems by computer simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 30(4), pages 331-345.
    3. Marvin K. Nakayama & Perwez Shahabuddin, 1998. "Likelihood Ratio Derivative Estimation for Finite-Time Performance Measures in Generalized Semi-Markov Processes," Management Science, INFORMS, vol. 44(10), pages 1426-1441, October.
    4. April Linton, 2003. "Introduction," Politics & Society, , vol. 31(3), pages 359-362, September.
    5. Russell R. Barton & John S. Ivey, Jr., 1996. "Nelder-Mead Simplex Modifications for Simulation Optimization," Management Science, INFORMS, vol. 42(7), pages 954-973, July.
    6. Hunt, F.Y., 2005. "Sample path optimality for a Markov optimization problem," Stochastic Processes and their Applications, Elsevier, vol. 115(5), pages 769-779, May.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Simulation Optimization; classification methods; literature survey;

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • Z11 - Other Special Topics - - Cultural Economics - - - Economics of the Arts and Literature

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:27652. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.