IDEAS home Printed from
   My bibliography  Save this paper

Fokker-Planck and Chapman-Kolmogorov equations for Ito processes with finite memory


  • McCauley, Joseph L.


The usual derivation of the Fokker-Planck partial differential eqn. (pde) assumes the Chapman-Kolmogorov equation for a Markov process [1,2]. Starting instead with an Ito stochastic differential equation (sde), we argue that finitely many states of memory are allowed in Kolmogorov’s two pdes, K1 (the backward time pde) and K2 (the Fokker-Planck pde), and show that a Chapman-Kolmogorov eqn. follows as well. We adapt Friedman’s derivation [3] to emphasize that finite memory is not excluded. We then give an example of a Gaussian transition density with 1-state memory satisfying both K1, K2, and the Chapman-Kolmogorov eqns. We begin the paper by explaining the meaning of backward time diffusion, and end by using our interpretation to produce a very short proof that the Green function for the Black-Scholes pde describes a Martingale in the risk neutral discounted stock price.

Suggested Citation

  • McCauley, Joseph L., 2007. "Fokker-Planck and Chapman-Kolmogorov equations for Ito processes with finite memory," MPRA Paper 2128, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:2128

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    1. McCauley, J.L. & Gunaratne, G.H. & Bassler, K.E., 2007. "Martingale option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 351-356.
    2. J. L. McCauley & G. H. Gunaratne & K. E. Bassler, 2006. "Martingale Option Pricing," Papers physics/0606011,, revised Feb 2007.
    3. Duffie, Darrell, 1988. "An extension of the Black-Scholes model of security valuation," Journal of Economic Theory, Elsevier, vol. 46(1), pages 194-204, October.
    4. McCauley, Joseph L. & Gunaratne, Gemunu H. & Bassler, Kevin E., 2007. "Martingale option pricing," MPRA Paper 2151, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. McCauley, Joseph L. & Bassler, Kevin E. & Gunaratne, Gemunu H., 2007. "Martingales, Detrending Data, and the Efficient Market Hypothesis," MPRA Paper 2256, University Library of Munich, Germany.
    2. McCauley, Joseph L. & Bassler, Kevin E. & Gunaratne, Gemunu h., 2007. "Martingales, the efficient market hypothesis, and spurious stylized facts," MPRA Paper 5303, University Library of Munich, Germany.

    More about this item


    Stochastic process; martingale; Ito process; stochastic differential eqn.; memory; nonMarkov process; 2 backward time diffusion; Fokker-Planck; Kolmogorov’s partial differential eqns.; Chapman-Kolmogorov eqn.; Black- Scholes eqn;

    JEL classification:

    • C69 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Other
    • G0 - Financial Economics - - General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:2128. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.