IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Empirically based modeling in financial economics and beyond, and spurious stylized facts

Listed author(s):
  • Bassler, Kevin E.
  • Gunaratne, Gemunu H.
  • McCauley, Joseph L.
Registered author(s):

    The discovery of the dynamics of a time series requires construction of the transition density. We explain why 1-point densities and scaling exponents cannot determine the class of stochastic dynamics. Time series require some sort of underlying statistical regularity to provide a basis for analysis, and we construct an exhaustive list of such tests. The condition for stationary increments, not scaling, determines the existence of long time pair autocorrelations. We conjecture that for a selfsimilar process neither the pair correlations nor the 2-point density scales in both times t and s except in a pathological case, and give examples using three well-known Gaussian processes. An incorrect assumption of stationary increments can generate spurious stylized facts, including fat tails. When a sliding window is applied to nonstationary, uncorrelated increments then a Hurst exponent Hs = 1 / 2 is generated by that procedure even if the underlying model scales with a Hurst exponent H [not equal to] 1/2. We explain how this occurs dynamically. The nonstationarity arises from systematic unevenness in the traders' behavior in real time. Spurious stylized facts arise mathematically from using a log increment with a 'sliding window' to read the series. In addition, we show that nonstationary processes are generally not globally transformable to stationary ones. We also present a more detailed explanation of our recent FX data analysis and modeling.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal International Review of Financial Analysis.

    Volume (Year): 17 (2008)
    Issue (Month): 5 (December)
    Pages: 767-783

    in new window

    Handle: RePEc:eee:finana:v:17:y:2008:i:5:p:767-783
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. McCauley, J.L. & Gunaratne, G.H. & Bassler, K.E., 2007. "Martingale option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 351-356.
    2. McCauley, Joseph L. & Gunaratne, Gemunu H. & Bassler, Kevin E., 2006. "Hurst exponents, Markov processes, and fractional Brownian motion," MPRA Paper 2154, University Library of Munich, Germany.
    3. J. L. McCauley & G. H. Gunaratne & K. E. Bassler, 2006. "Martingale Option Pricing," Papers physics/0606011,, revised Feb 2007.
    4. Bassler, Kevin E. & McCauley, Joseph L. & Gunaratne, Gemunu H., 2006. "Nonstationary increments, scaling distributions, and variable diffusion processes in financial markets," MPRA Paper 2126, University Library of Munich, Germany.
    5. McCauley, Joseph L. & Gunaratne, Gemunu H. & Bassler, Kevin E., 2007. "Martingale option pricing," MPRA Paper 2151, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:17:y:2008:i:5:p:767-783. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.